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Motivation

e Goal: Naturally specify tasks
for autonomous systems

* Reality enters:

— Autonomous systems must deal
with uncertainty

— System models are not perfect




Our Contribution

* Generalize previous results
— MDPs [de Alfaro, Ding + Belta]
— Interval MDPs [Chatterjee]
— Robust dynamic programming [Nilim + El Ghaoui]

e Robustness almost for free
— O(log(1/€)) times more effort



Specification language (LTL)

Want to specify properties such as:
@ Response: always SIGNAL after a REQUEST arrives
@ Liveness: always eventually PICKUP
@ Safety: always remain SAFE
@ Priority: do JOB1 until JOB2
@ Guarantee: eventually reach GOAL
Linear temporal logic (LTL):
@ A logic for reasoning about how properties change over time
@ Reason about infinite sequences o = sps1sp ... of states
@ Propositional logic: A (and), v (or), = (implies), - (not)

@ Temporal operators: U (until), O (next), O (always), < (eventually)



Specification language (LTL)

Want to specify properties such as:
@ Response: O( REQUEST = SIGNAL )
@ Liveness: 0¢& PICKUP
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@ Priority: JOB1 U JOB2
@ Guarantee: & GOAL
Linear temporal logic (LTL):
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@ Reason about infinite sequences o = sps15> ... of states
@ Propositional logic: A (and), v (or), = (implies), - (not)

@ Temporal operators: U (until), O (next), O (always), & (eventually)



System model (uncertain MDP)

« An MDP M s a tuple M = (S, A, P, s,, AP, L), where
— S is a finite set of states,
— Ais a finite set of actions (e.g., motion primitives),
— P:SxAxS—[0,1] is the transition probability function,
— S, Is the initial state,
— AP is a finite set of atomic propositions, and
— L : S — 2AP is a labeling function.

« Control policy: MDP
— TS —A
— Induces Markov chain Uncertain MDP



System model (uncertain MDP)

* Uncertainty set for MDP transitions (likelihood,
entropy, MAP, interval, scenatrio, ...)

e Control picks action, environment picks transition
* Nominal Uncertain
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Problem statement

* Given:
— Uncertain MDP M w/ initial state s,
— LTL specification ¢

* Problem: Create control policy t* that maximizes

the probability of MDP M satisfying ¢ over
uncertainty set, i.e.

m° = argmaxminP™7" (sg E )
mell TeT

System Env. policies
policies (uncertainty)



Tutorial example
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Task: Repeatedly PICKUP and always avoid PIT



Solution overview

1. LTL spec ¢ = deterministic Rabin automaton A,
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1. LTL spec ¢ = deterministic Rabin automaton A,
2. Create product MDP M =M x A

3. Compute winning setin M,
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Solution overview

LTL spec ¢ =2 deterministic Rabin automaton A,
Create product MDP M, = M x A
Compute winning set in M

Compute control policy to maximize probability
of reaching winning set (dynamic programming)
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Solution overview

LTL spec ¢ =2 deterministic Rabin automaton A,
Create product MDP M, = M x A
Compute winning set in M

Compute control policy to maximize probability
of reaching winning set (dynamic programming)

Project policy back to the original MDP



Solution overview

LTL spec ¢ = deterministic Rabin automaton A
Create product MDP M, = M x A

Compute winning set in M
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Compute control policy to maximize probability
of reaching winning set (dynamic programming)

5. Project policy back to the original MDP

* Our focus: Step 4



LTL spec to automaton (1/5)

e Spec satisfaction?
— Infinitely often visit “good” states
— Finitely often visit “bad” states



LTL spec to automaton (1/5)

e Spec satisfaction?
— Infinitely often visit “good” states
— Finitely often visit “bad” states

* EXx:
— Task: Repeatedly PICKUP and always avoid PIT
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Product automaton (2/5)

* M, has behaviors that satisfy system and spec

X Task: Repeatedly PICKUP
and always avoid PIT

PICKUP




Product automaton (2/5)

* M, has behaviors that satisfy system and spec
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Winning sets (3/5)

* Winning set:
— System can stay in set of states forever
— Includes “good” states
— Excludes ”!oad” states

‘ Wl y
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* Problem is now to reach union of these sets



Reachability problem (4/5)

V(s) is probability of satisfying spec at state s

V(s) = 1 for s in winning sets (S, = W! U W?)
V(s) = 0 for s that cannot reach winning set (S;)
V(s)=7???forsinS =S—(S,US,)



Robust dynamic programming (4/5)

 Undiscounted problem [compare w/ Nilim + El Ghaoui]

* Informally:
— V maps each state to a scalar (spec. satisfaction prob.)
— p is probability distribution environment selects
— A(s) is the set of control actions in state s
—r(s,a) is a scalar reward

TV)(s) := max [r(s,a)+min p'V
(TV)(s) = max [r(s,0)+min p"V]



Robust dynamic programming (4/5)

* Theorem: T operator is a contraction
— Based on transformation of product MDP
— Problem specific insight
— Weighted sup norm

e Use contraction mapping theorem for
existence/uniqueness of TV* = V* fixed-point

* Value iteration to compute V*



Solution overview

LTL spec ¢ = deterministic Rabin automaton A
Create product MDP M, = M x A

Compute winning set in M
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Compute control policy to maximize probability
of reaching winning set (dynamic programming)

5. Project policy back to the original MDP

* Our focus: Step 4



Complexity

e Good?
— n, m = # states, edges in product MDP
— e-suboptimal policy: O(n’m log(1/¢) log(1/€) ) [likelihood]
(TV)(s) := max [r(s,a)+min p* V]

acA(s) pePY



Complexity

* Good?

— n, m = # states, edges in product MDP

— e-suboptimal policy: O(n’m log(1/¢€) log(1/¢) ) [likelihood]
 Waitl!

— LTL to DRA: O(2-exp(]|e@]))

— For LTL fragment: O(exp(|®|))  [Alur]

— For other LTL fragment: N/JA (!)  [Wolff, ICRA13 sub.]



Complexity

* Good?

— n, m = # states, edges in product MDP

— e-suboptimal policy: O(n’m log(1/¢€) log(1/¢) ) [likelihood]
 Waitl!

— LTL to DRA: O(2-exp(]|e@]))

— For LTL fragment: O(exp(|®|))  [Alur]

— For other LTL fragment: N/JA (!)  [Wolff, ICRA13 sub.]

 Takeaway: Robust policy in O(log(1/€)) more time [Nilim + El
Ghaoui results for likelihood uncert.]



Simulation Results
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* Informal task: Start + end at HOME. Avoid OBSTACLES. Visit R1, R2, R3.
* Sample trajectories: nominal (0.47 sec) + robust (5.7 sec)
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Conclusions

* Our approach:
— Uncertainty sets for MDP transitions
— LTL formulas describe complex tasks
— Robustness almost free [O(log(1/€)) more time]

e Current work:

— Non-deterministic + stochastic environments
— Multi-objective



Thanks!

e Questions?
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