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Modern Autonomous Systems

•  How to specify complex tasks?
•  How to create op5mal controllers?
•  React to adversarial environment?

Caltech NASA/JPL

US Navy

hPp://www.andrewalliance.com/
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UAV Surveillance Tasks
•  Tracking a vehicle with a team of UAVs

AFRL, www.aeryon.com
Eric M. Wolff (Caltech)



Planning in a Dynamic Environment

•  Dynamic obstacles + complex tasks in a warehouse

•  Q: How to compute an op#mal control policy that
guarantees a complex, logical task is completed?

Eric M. Wolff (Caltech)



Our Contribu#ons

•  Op5mal control for non-‐determinis5c systems
with temporal logic specifica#ons

•  Polynomial #me controller synthesis
•  Any5me op#miza#on

Cost func5on: Average Minimax Task Cycle
Complexity: POLY POLY in task

graph
EXP in task
graph
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Hierarchical Control Architecture

•  We focus on the discrete planning layer
•  Discrete plan is executed at con#nuous level

B C

A

1. AlurHLP00, BeltaH06, HabetsCS06, KaramanF09, KloetzerB08, WongpiromsarnTM12, and more

Dynamical system Discrete abstrac5on1 Non-‐determinis5c
transi5on system
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Non-‐determinis#c Transi#on Systems
•  A non-‐determinis5c transi5on system (NTS) is a
tuple T = (S, A, R, s0, AP, L) with
–  states S,
–  ac5ons A,
–  transi5on func#on R: S x A→ 2S,
–  ini#al state s0,
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Non-‐determinis#c Transi#on Systems
•  A non-‐determinis5c transi5on system (NTS) is a
tuple T = (S, A, R, s0, AP, L) with
–  states S,
–  ac5ons A,
–  transi5on func#on R: S x A→ 2S,
–  ini#al state s0,
–  atomic proposi#ons AP,
–  labeling func#on L : S→ 2AP, and
–  non-‐nega#ve valued cost func#on c : S x A x S→ ℜ.

2.6 1.1

0 0
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Control Policies
•  Finite-‐memory control policy: μ: S x M→ A x M
•  Two-‐player game:
– System picks ac#on using control policy
– Environment picks next state

•  Tμ (s) : set of execu#ons from state s under policy μ

Eric M. Wolff (Caltech)



Temporal Logictual re c GO

A logic for reasoning about how properties change over time

Reason about infinite sequences σ = s0s1s2 . . . of states
Propositional logic: ∧ (and), ∨ (or), �⇒ (implies), ¬ (not)

Temporal operators: U (until), � (next), � (always), � (eventually)

Complex sequencing of ac5ons

Bomb disposalDangerous liquid handlingMo#on Planning
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Temporal Logictual re c GO

A logic for reasoning about how properties change over time

Reason about infinite sequences σ = s0s1s2 . . . of states
Propositional logic: ∧ (and), ∨ (or), �⇒ (implies), ¬ (not)

Temporal operators: U (until), � (next), � (always), � (eventually)

INTRACTABLE!
Bomb disposalDangerous liquid handlingMo#on Planning
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Specifica#on Language

•  We consider formulas of the form:

where

s i

alw y tr 2 ]

ϕ = ϕsafe ∧ ϕresp ∧ ϕper ∧ ϕtask ∧ ϕss

resp
,

is rue infinitely of e , and �� ϕ me

t c e o

ϕ a e sk (

ϕsafe ∶= �ψ1,

ϕresp ∶= �
j∈I2
�(ψ2,j �⇒ �φ2,j),

ϕper ∶=�� ψ3,

ϕtask ∶= �
j∈I4
��ψ4,j ,

ϕss

resp
∶= �

j∈I5
�� (ψ5,j �⇒ �φ5,j).

Safety

Response

Stability

Repeated tasks

Steady-‐state response
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Cost Func#ons

•  Generic cost func#on J

•  We consider:
– Average cost
– Minimax (boPleneck) cost
– Average cost-‐per-‐task-‐cycle

 

 J :T
µ (s)! ! "0
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Problem Statement
•  Given:
– Non-‐determinis#c transi#on system T
–  Temporal logic specifica#on ϕ of the form

–  Cost func#on J

•  Problem: Create control policy μ
such that that the set of runs Tμ(s0)
sa#sfies ϕ and minimizes J

al formula ϕ, he no a ion �ϕ
an tha

a y y t [21

t n o m h o m

ϕ = ϕsafe ∧ ϕresp ∧ ϕper ∧ ϕtask ∧ ϕss

resp

r

saf 1,

ϕresp � �(ψ2 j �
 

minµ J(T
µ (s0 ))

s.t. T µ (s0 )!!
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Related Work

•  Automata-‐based approach [Vardi & Wolper]

– Construct automaton from specifica#on
– EXP or 2-‐EXP in the specifica#on

•  Our approach
– No automaton construc#on
– Compute directly on the state space

Eric M. Wolff (Caltech)



Related Work

•  Related logics:
– GR(1): PitermanPS06, BloemJPPS12

– GRabin(1): Ehlers11
–  AlurT04; MalerPS95

•  Op#mal control: JingEKG13

•  How this work differs:
– More system proper#es/tasks than GR(1)
– Only bounded liveness assump#ons on environment

GR(1) system + stability

Eric M. Wolff (Caltech)



Main Idea

•  Op#miza#on boils down to reasoning about
worst-‐case costs between tasks

•  Use value func5on and task graph for this

S′ S b∩S′ ≠ } T e

t can possi ly

ϕ afe ∶= �ψ1

ϕ
j∈

ϕtask ∶= �
j∈I4
��ψ4,j ,

Tasks: P, D0, D1, D2, D3

Eric M. Wolff (Caltech)



Value Func#on and Reachability

•  Vc
B(s): minimum cost to reach set B from state s

under all resolu#ons of the non-‐determinism

 
 
 
 
 

e 1 with unit cost on edges nd B = 4}. Then

ca no guaran ee eac ng set B from states or .
a ue function satisfies th op imality condi ion

V c
B,T (s) = min

a∈A(s) max
t∈R(s,a)V

c
B,T (t) + c(s, a, t)
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Value Func#on and Reachability

•  Vc
B(s): minimum cost to reach set B from state s

under all resolu#ons of the non-‐determinism

•  Example
– Vc

4(1) = ∞
– Vc

4(2) = ∞
– Vc

4(3) = 1
– Vc

4(4) = 0

e 1 with unit cost on edges nd B = 4}. Then

ca no guaran ee eac ng set B from states or .
a ue function satisfies th op imality condi ion

V c
B,T (s) = min

a∈A(s) max
t∈R(s,a)V

c
B,T (t) + c(s, a, t)

pt m l c
s [23] n

) = ar
a

Eric M. Wolff (Caltech)



Task	  Graph	  

•  Create	  new	  graph	  that	  encodes	  shortest	  paths	  
between	  tasks	  

•  F	  states	  (determinis#c)	  
•  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  states	  (non-‐determinis#c)	  

s1	  

s2	  

s4	  

2	   {B}	  

3	  {A}	  s1	   s2	  

s3	   s4	  

2	  

4	  

1	  

2	  

{A}	  

{B}	  

{A}	  

0	  0	  

Tasks:	  A,B	  
Cost	  =	  2	  
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Task	  Graph	  

•  Create	  new	  graph	  that	  encodes	  shortest	  paths	  
between	  tasks	  

•  F	  states	  (determinis#c)	  
•  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  states	  (non-‐determinis#c)	  

s1	  

s2	  

s4	  

2	  
0	  

{B}	  

s1,s2	  

3	  
3	  {A}	  s1	   s2	  

s3	   s4	  

2	  

4	  

1	  

2	  

{A}	  

{B}	  

{A}	  

0	  0	  

Tasks:	  A,B	  
Cost	  =	  1.5	  

Including	  subsets	  in	  the	  task	  graph	  can	  reduce	  cost!	  
Eric	  M.	  Wolff	  (Caltech)	  



Task	  Graph	  

•  Create	  new	  graph	  that	  encodes	  shortest	  paths	  
between	  tasks	  

•  Number	  of	  states	  
– Determinis#c:	  |F|	  
– Non-‐determinis#c:	  	  

TABLE I
COMPLEXITY OF FEASIBLE POLICY SYNTHESIS

Language DTS NTS
Frag. in (1) O(�ϕ�(�S� + �R�)) O(�ϕ�Fmin(�S� + �R�))
GR(1) O(�ϕ��S��R�) O(�ϕ��S��R�)
LTL O(2(�ϕ�)(�S� + �R�)) O(22(�ϕ�)(�S� + �R�))

Algorithm 2), one can compute an optimal control policy
using the results of Chatterjee et al. [19]. For deterministic
systems, extensions to a more general weighted average cost
function can be found in [18].

VII. COMPLEXITY

We summarize our complexity results for feasible control
policy synthesis and compare with LTL and GR(1) [11].
We assume that set membership is determined in constant
time with a hash function [24]. We denote the length of a
temporal logic formula by �ϕ�. Let �ϕ� = �I2� + �I4� + �I5� for
the fragment in (1), �ϕ� = mn for a GR(1) formula with m

assumptions and n guarantees, and �ϕ� be the formula length
for LTL [21]. Recall that Fmin =minj∈I4 �[[p4,j]]�. For typical
motion planning specifications, Fmin � �S� and �ϕ� is small.
We use the non-symbolic complexity results for GR(1) in
[11]. Results are summarized in Table I.

We now summarize the complexity of optimal con-
trol policy synthesis. The task graph G

′ = (V ′,E′)
has O(∑i∈I4 2�Fi� − 1) states and can be computed in
O((∑i∈I4 2�Fi� − 1)(�S�log�S� + �R�)) time. Computing an
optimal control policy for JTC requires solving an NP-hard
generalized traveling salesman problem on G

′. Computing an
optimal control policy for Jbot requires O(log�E′�(�V ′�+�E′�)
time. An optimal control policy for Javg can be computed in
pseudo-polynomial time [19]. For deterministic systems, the
task graph has O(∑i∈I4 �Fi�) states and can be computed
in O((∑i∈I4 �Fi�)(�S�log�S� + �R�)) time. An optimal control
policy for Javg can be computed in O(�S��R�) time. Thus,
we can compute optimal control policies for deterministic
transition systems with cost functions Jbot and Javg in time
polynomial in the size of the system and specification.
Additionally, for non-deterministic transition systems where�Fj � = 1 for all j ∈ I4, we can compute optimal control
policies for Jbot in time polynomial in the size of the system
and specification.

Remark 8. The fragment in (1) is not handled well by
standard approaches. Using ltl2ba [27], we created Büchi
automaton for formulas of the form ϕresp. The automaton size
and time to compute it both increased exponentially with the
number of conjunctions in ϕresp.

VIII. EXAMPLES

The following examples (based on those in [15]) demon-
strate the techniques developed in Sections V and VI for
tasks motivated by robot motion planning in a planar en-
vironment (see Figure 3). All computations were done in
Python on a dual-core Linux desktop with 2 GB of memory.
All computation times were averaged over five arbitrarily
generated problem instances and include construction of the

Fig. 3. Left: Diagram of deterministic setup (n = 10). Only white cells are
labeled ’stockroom.’ Right: Diagram of non-deterministic setup (n = 10).
A dynamic obstacle (obs) moves within the shaded region.

Fig. 4. Control policy synthesis times for deterministic (left) and non-
deterministic (right) grids.

transition system. Due to lack of space, we only consider the
average cost-per-task-cycle cost function.

A. Deterministic transition system
Consider a gridworld where a robot occupies a single cell

at a time and can choose to either remain in its current cell or
move to one of four adjacent cells at each step. We consider
square grids with static obstacle densities of 20 percent. The
robot’s task is to eventually remain in the stockroom while
repeatedly visiting a pickup location P and multiple dropoff
locations D0,D1,D2,D3. The robot must never collide
with a static obstacle. The set of atomic propositions is{P,D0,D1,D2,D3, storeroom,obs}. This task is formalized
by ϕ =��stockroom ∧ ��P ∧ �j∈I4 ��Dj ∧ �¬obs. In
all following results, Dj holds at a single state in the transi-
tion system. Results for optimal control policy synthesis are
shown in Figure 4 for n×n grids where n ∈ {200,300,400}.
B. Non-deterministic transition system

We now consider a similar setup with a dynamically
moving obstacle. The state of the system is the product of
the robot’s location and the obstacle’s location, both of which
can move as previously described for the robot. The robot
selects an action and then the obstacle non-deterministically
moves. The robot’s task is similar to before and is formalized
as ϕ = ��P ∧ �j∈I4 ��Dj ∧ �¬obs. Results for optimal
control policy synthesis are shown in Figure 4 for n×n grids
where n ∈ {10,14,18}.

IX. CONCLUSIONS

We have presented a framework for optimal control policy
synthesis for non-deterministic transition systems with spec-
ifications from a fragment of temporal logic. Our approach
is simple and makes explicit connections with dynamic
programming through our extensive use of value functions.

s1	  

s2	  

s4	  

2	  
0	  

{B}	  

s1,s2	  

3	  
3	  {A}	  s1	   s2	  

s3	   s4	  

2	  

4	  

1	  

2	  

{A}	  

{B}	  

{A}	  

0	  0	  

II. PRELIMINARIES

In this section we give background on the system model

and specification language that we consider. The notation

follows that used in the authors’ previous work [15].

An atomic proposition is a statement that is either True or

False . A propositional formula is composed of only atomic

propositions and propositional connectives, i.e., ∧ (and) and¬ (not). The cardinality of a set X is denoted by �X �.
A. System model

We use non-deterministic finite transition systems to

model the system behavior.

Definition 1. A non-deterministic (finite) transition system
(NTS) is a tuple T = (S,A,R, s0,AP,L, c) consisting of a

finite set of states S, a finite set of actions A, a transition

function R ∶ S × A → 2S , an initial state s0 ∈ S, a set of

atomic propositions AP , a labeling function L ∶ S → 2AP
,

and a non-negative cost function c ∶ S ×A × S → R.

Let A(s) denote the set of available actions at state s.

Denote the parents of the states in the set S′ ⊆ S by

Parents(S′) ∶= {s ∈ S � ∃a ∈ A(s) and R(s, a)∩S′ ≠ �}. The

set Parents(S′) includes all states in S that can (possibly)

reach S′ in a single transition. We assume that the transition

system is non-blocking, i.e., �R(s, a)� ≥ 1 for each state s ∈ S
and action a ∈ A(s). A deterministic transition system (DTS)

is a non-deterministic transition system where �R(s, a)� = 1
for each state s ∈ S and action a ∈ A(s).

A memoryless control policy for a non-deterministic tran-

sition system T is a map µ ∶ S → A, where µ(s) ∈ A(s)
for state s ∈ S. A finite-memory control policy is a map

µ ∶ S × M → A × M where the finite set M is called

the memory and µ(s,m) ∈ A(s) ×M for state s ∈ S and

mode m ∈ M . An infinite-memory control policy is a map

µ ∶ S+ → A, where S+ is a finite sequence of states ending

in state s and µ(s) ∈ A(s).
Given a state s ∈ S and action a ∈ A(s), there may

be multiple possible successor states in the set R(s, a),
i.e., �R(s, a)� > 1. A single successor state t ∈ R(s, a) is

non-deterministically selected. We interpret this selection (or

action) as an uncontrolled, adversarial environment resolving

the non-determinism.

A run σ = s0s1s2 . . . of T is an infinite sequence of its

states, where si ∈ S is the state of the system at index i (also

denoted σi) and for each i = 0,1, . . ., there exists a ∈ A(si)
such that si+1 ∈ R(si, a). A word is an infinite sequence of

labels L(σ) = L(s0)L(s1)L(s2) . . . where σ = s0s1s2 . . . is

a run. The set of runs of T with initial state s ∈ S induced

by a control policy µ is denoted by T µ(s).
Connections to graph theory: We will often consider

a non-deterministic transition system as a graph with the

natural bijection between the states and transitions of the

transition system and the vertices and edges of the graph.

Let G = (S,R) be a directed graph (digraph) with vertices

S and edges R. There is an edge e from vertex s to vertex t
if and only if t ∈ R(s, a) for some a ∈ A(s). A digraph

G = (S,R) is strongly connected if there exists a path

between each pair of vertices s, t ∈ S no matter how the

non-determinism is resolved. A digraph G′ = (S′,R′) is a

subgraph of G = (S,R) if S′ ⊆ S and R′ ⊆ R. The subgraph

of G restricted to states S′ ⊆ S is denoted by G�S′ . A digraph

G′ ⊆ G is a strongly connected component if it is a maximal

strongly connected subgraph of G.

B. A fragment of temporal logic
We use the fragment of temporal logic introduced in [15]

to specify tasks such as safe navigation, immediate response

to the environment, persistent coverage, and surveillance. For

a propositional formula ϕ, the notation �ϕ means that ϕ is

always true, �ϕ means that ϕ is eventually true, � � ϕ
means that ϕ is true infinitely often, and �� ϕ means that

ϕ is eventually always true [21].

Syntax: We consider formulas of the form

ϕ = ϕsafe ∧ ϕresp ∧ ϕper ∧ ϕtask ∧ ϕss

resp
, (1)

where

ϕsafe ∶= �ψ1,

ϕresp ∶= �
j∈I2
�(ψ2,j �⇒ �φ2,j),

ϕper ∶=�� ψ3,

ϕtask ∶= �
j∈I4
��ψ4,j ,

ϕss

resp
∶= �

j∈I5
�� (ψ5,j �⇒ �φ5,j).

Note that �ψ1 = ��j∈I1 ψ1,j = �j∈I1 �ψ1,j and � � ψ3 =� � �j∈I3 ψ3,j = �j∈I3� � ψ3,j . In the above definitions,

I1, . . . , I5 are finite index sets and ψi,j and φi,j are propo-

sitional formulas for any i and j.

We refer to each ψ4,j in ϕtask as a recurrent task.

Remark 1. Guarantee and obligation, i.e., �ψ and�(ψ �⇒ �φ) respectively, are not included in (1). Neither

are disjunctions of formulas of the form (1). This fragment

of LTL is incomparable to other commonly used temporal

logics, such as computational tree logic and GR(1). See

Wolff et al. [15] for details.

Remark 2. Our results easily extend to include a fixed order

for some or all of the tasks in ϕtask, as well as ordered tasks

with different state constraints between the tasks.

Semantics: We use set operations between a run σ ofT = (S,A,R, s0,AP,L, c) and subsets of S where particular

propositional formulas hold to define satisfaction of a tem-

poral logic formula [22]. We denote the set of states where

propositional formula ψ holds by [[ψ]]. A run σ satisfies the

temporal logic formula ϕ, denoted by σ � ϕ, if and only if

certain set operations hold.

Let σ be a run of the system T , Inf(σ) denote the set

of states visited infinitely often in σ, and Vis(σ) denote the

set of states visited at least once in σ. Given propositional

formulas ψ and φ, we relate satisfaction of a temporal logic

formula of the form (1) with set operations as follows:

● σ � �ψ iff Vis(σ) ⊆ [[ψ]],

Eric	  M.	  Wolff	  (Caltech)	  



Average Cost Func#on

•  Average cost of run σ is

•  The average cost func#on is

J
′
avg(σ, µ(σ)) ∶= lim sup

n→∞
∑n

t=0 c(σt, µ(σt),σt+1)
n

now define t e w rs ase a e

wi h a ingle s te p ask, i e., F

g costs

( ∑t 0 c

a s r n nd n ro input o t

Javg(T µ(s)) ∶= sup
σ∈T µ(s0)

J
′
avg(σ, µ(σ))

Eric M. Wolff (Caltech)



Average—Solu#on

•  Policy has two parts:
1)  Op#mal policy ignoring the tasks
2)  Visit all tasks once

•  An op#mal policy alternates
–  12 112 1112….
–  Requires infinite memory

•  We adapt an algorithm from ChaPerjee,
Henzinger, Jurdzinski 2006.

•  Polynomial 5me

Eric M. Wolff (Caltech)



Minimax (boPleneck) Cost

•  Minimax cost of run σ is

where Ttask(i) is the accumulated cost at the i-‐th
comple#on of a task

•  The minimax cost func#on is

ransi on sys ems with LTL L t Tt s

n a r n σ. he m nimax c

J
′
bot(σ, µ(σ)) ∶= lim sup

i→∞ (Ttask(i + 1) −Ttask(i))
uns d t l t f T

e w rst-c se minimax c st f n

Jbot(T µ(s)) ∶= max
σ∈T µ(s)J

′
bot(σ, µ(σ))

Eric M. Wolff (Caltech)



Minimax—Solu#on	  	  

•  Approach	  
– Fix	  a	  cost	  λ	  
– Remove	  all	  edges	  with	  cost	  >	  λ	  from	  task	  graph	  
–  Is	  remaining	  graph	  have	  a	  strongly	  connected	  
component	  that	  includes	  all	  tasks?	  

– Binary	  search	  on	  λ	  
•  Polynomial	  5me	  in	  task	  graph	  

s1	  

s2	  

s4	  

2	  
0	  

{B}	  

s1,s2	  

3	  
3	  {A}	  
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Average	  Cost-‐Per-‐Task-‐Cycle	  

•  Average	  cost-‐per-‐task-‐cycle	  of	  run	  σ	  is	  

•  The	  average	  cost-‐per-‐task-‐cycle	  cost	  func#on	  
is	  

Algorithm 2 Overview: Feasible synthesis for NTS
Input: Non-deterministic system T and formula ϕ
Output: Control policy µ

1: Compute Tresp on T
2: Tsafe ← Tresp�S−FPre∞(S−[[ψ1]])
3: Tper ← Tsafe�S−FPre∞(S−[[ψ3]])
4: Compute T ss

resp on Tper
5: Ψ ∶= {[[ψ4,j]] for all j ∈ I4}
6: SA, F ∶= {F1, . . . , F�I4�}← BUCHI(T ss

resp,Ψ)
7: W ∶= CPre∞Tsafe

(SA)
8: if s0 ∉W then

9: return “no control policy exists”
10: end if

11: µSA ← control policy induced by V c
SA,Tsafe

12: µj ← control policy induced by V c
Fj ,Tsafe

for all j ∈ I4
13: return Control policies µSA and µj for all j ∈ I4

Fig. 2. A non-deterministic transition system and its task graph.

Algorithm 1 (see Algorithm 2). Note that Tinf is the largest
subgraph of T where all constraints from ϕsafe, ϕresp, ϕper,
and ϕss

resp hold. Each Fj is the largest set of states for the jth
task that are part of a feasible control policy. The problem
is now to compute a feasible (winning) control policy that
also minimizes the relevant cost function.

Since only the recurrent tasks in ϕtask on Tinf will matter
for optimization, we construct a new graph that encodes the
cost of moving between all tasks. We construct the task graph
G′ = (V ′,E′) which encodes the cost of optimal control
policies between all tasks in ϕtask (see Figure 2). Let V ′
be partitioned as V ′ = �j∈I4 V ′j , where V ′i ∩ V ′j = � for all
i ≠ j. Let Fj ⊆ S denote the set of states that correspond to
the jth task in ϕtask, as returned from Algorithm 1. Create a
state v ∈ V ′j for each of the 2�Fj � − 1 non-empty subsets of
Fj that are reachable from the initial state. Define the map
τ ∶ V ′ → 2S from each state in V ′ to subsets of states in S.
For each state v ∈ V ′, compute the controlled value function
V c
τ(v),Tinf

on Tinf. For all states u ∈ V ′i and v ∈ V ′j where
i ≠ j, define an edge euv ∈ E′. Assign a cost to edge euv as
cuv ∶=maxs∈τ(u) V c

τ(v),Tinf
(s). The cost cuv is the maximum

worst-case cost of reaching a state t ∈ τ(v) from a state
s ∈ τ(u), when using an optimal control policy.

It is necessary to consider all subsets of states, as the
cost of reaching each subset may differ due to the non-
determinism. For deterministic systems, one can simply
create a state in V ′j for each state in Fj . This is because
the cost of all subsets of Fj can be determined by the costs
to reach the individual states in Fj .

Remark 7. It may not be necessary to create the entire

task graph at once. For example, one can create a task
graph with �I4� states where each state corresponds to the
set Fj . This gives a control policy that leads to an upper
bound on the cost of an optimal policy. Additionally, by
defining edges in the task graph as the minimum worst-case
cost mins∈τ(u) V c

τ(v),Tinf
(s) between tasks, one can compute

a lower bound on the cost of an optimal policy. One can
use the current control policy and improve performance in
an anytime manner by adding more states to the subgraph
corresponding to subsets of each Fj .

Algorithm 3 Overview: Optimal synthesis for NTS
Input: NTS T , formula ϕ, cost function J
Output: Optimal control policy µ∗

1: Compute T ss
resp, SA, and Fj for all j ∈ I4 (see Alg. 2)

2: Compute F ∗j ⊆ Fj for all j ∈ I4 and optimal task order
3: µ∗F ∗ ← control policy from V c

F ∗,Tsafe
where F ∗ = ∪j∈I4F ∗j

4: µ∗j ← control policy from V c
F ∗j ,Tsafe

for all j ∈ I4
5: return µ∗F ∗ , µ∗j for all j ∈ I4 and optimal task order

A. Average cost-per-task-cycle
Recall that for ϕtask = �j∈I4 � � ψ4,j , the propositional

formula ψ4,j is the jth task. A run σ of system T completes
the jth task at time t if and only if σt ∈ [[ψ4,j]]. A task
cycle is a sequence of states that completes each task at least
once, i.e., it intersects [[ψj]] for each j = 1, . . . ,m at least
once. Similarly to [12], we minimize the average cost-per-
task-cycle, or equivalently the maximum cost of a task cycle
in the limit. For a deterministic system, this corresponds to
finding a cycle of minimal cost that completes every task.

We define the cost function over a run σ. Let σ be a
run of T under control policy µ, µ(σ) be the corresponding
control input sequence, and ITC(t) = 1 indicate that the
system completes a task cycle at time t and ITC(t) = 0
otherwise. The average cost per task cycle of run σ is

J ′TC(σ, µ(σ)) ∶= lim sup
n→∞

∑n
t=0 c(σt, µ(σt),σt+1)∑n

t=0 ITC(t) ,

which maps runs and control inputs of T to R ∪ ∞. This
map is well-defined when (i) c(σt, µ(σt),σt+1) is bounded
for all t ≥ 0, and (ii) there exists a t′ ∈ N such that ITC(t) = 1
for infinitely many t ≥ t′. We assume that (i) is true in the
sequel and note that (ii) holds for every run that satisfies a
formula ϕ with at least one task. If there are no tasks in ϕ,
one can add the task ��True so that ITC(t) = 1 at every
time instance (see Section VI-C).

We define the average per-task-cycle cost function

JTC(T µ(s)) ∶= max
σ∈T µ(s)J

′
TC(σ, µ(σ)) (2)

over the set of runs of system T starting from initial state s
under control policy µ. The cost function (2) does not depend
on any finite behavior of the system, intuitively because any
short-term costs are averaged out in the limit.

We next show that Problem 2 with cost function JTC is at
least as hard as the NP-hard generalized traveling salesman
problem [26].

Algorithm 2 Overview: Feasible synthesis for NTS
Input: Non-deterministic system T and formula ϕ
Output: Control policy µ

1: Compute Tresp on T
2: Tsafe ← Tresp�S−FPre∞(S−[[ψ1]])
3: Tper ← Tsafe�S−FPre∞(S−[[ψ3]])
4: Compute T ss

resp on Tper
5: Ψ ∶= {[[ψ4,j]] for all j ∈ I4}
6: SA, F ∶= {F1, . . . , F�I4�}← BUCHI(T ss

resp,Ψ)
7: W ∶= CPre∞Tsafe

(SA)
8: if s0 ∉W then

9: return “no control policy exists”
10: end if

11: µSA ← control policy induced by V c
SA,Tsafe

12: µj ← control policy induced by V c
Fj ,Tsafe

for all j ∈ I4
13: return Control policies µSA and µj for all j ∈ I4

Fig. 2. A non-deterministic transition system and its task graph.
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task-cycle, or equivalently the maximum cost of a task cycle
in the limit. For a deterministic system, this corresponds to
finding a cycle of minimal cost that completes every task.

We define the cost function over a run σ. Let σ be a
run of T under control policy µ, µ(σ) be the corresponding
control input sequence, and ITC(t) = 1 indicate that the
system completes a task cycle at time t and ITC(t) = 0
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which maps runs and control inputs of T to R ∪ ∞. This
map is well-defined when (i) c(σt, µ(σt),σt+1) is bounded
for all t ≥ 0, and (ii) there exists a t′ ∈ N such that ITC(t) = 1
for infinitely many t ≥ t′. We assume that (i) is true in the
sequel and note that (ii) holds for every run that satisfies a
formula ϕ with at least one task. If there are no tasks in ϕ,
one can add the task ��True so that ITC(t) = 1 at every
time instance (see Section VI-C).

We define the average per-task-cycle cost function
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σ∈T µ(s)J

′
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over the set of runs of system T starting from initial state s
under control policy µ. The cost function (2) does not depend
on any finite behavior of the system, intuitively because any
short-term costs are averaged out in the limit.
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Op#mality	  for	  Task	  Cycle	  is	  Hard	  

•  Theorem:	  Compu#ng	  a	  control	  policy	  that	  is	  
minimizes	  the	  average	  cost-‐per-‐task-‐cycle	  is	  
NP-‐hard,	  even	  in	  the	  determinis#c	  case.	  

•  Proof:	  Construct	  a	  generalized	  traveling	  
salesman	  problem	  where	  tasks	  are	  nodes	  in	  
the	  TSP	  graph.	  
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Task Cycle—Solu#on

•  Assump5on: The task ordering is fixed

•  Solve generalized TSP on task graph
– Use commercial solvers
– Approximate solu#ons

•  Solu#on gives op#mal task ordering
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Example: Pickup and Delivery

•  System:
– Robot and obstacle
move to adjacent
regions each step

•  Specs:
– Always avoid collisions
– Repeatedly visit Pickup
and Dropoff loca#ons
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Example: Pickup and Delivery

•  System:
– Robot and
obstacle move to
adjacent regions
each step

•  Specs:
– Avoid collisions
– Repeatedly visit
Pickup and Dropoff
loca#ons

Computa5on Time—Op5mal Controller
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Comparison to GR1 (feasible)

Our workPrevious
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Conclusions

•  Op5mal control with temporal logic

•  Future work
– Receding horizon control
– Removing fixed-‐ordering assump#on

B C
A

Dynamics Abstrac5on NTS

Cost func5on: Average Minimax Task Cycle
Complexity: POLY POLY in task

graph
EXP in task
graph
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