Optimal Control of Non-deterministic Systems for a Fragment of Temporal Logic

Eric M. Wolff¹ Ufuk Topcu² and Richard M. Murray¹ ¹Caltech and ²UPenn

CDC 11 December 2013

Modern Autonomous Systems

Caltech

http://www.andrewalliance.com/

- How to specify **complex tasks**?
- How to create **optimal** controllers?
- React to **adversarial** environment?

US Navy

UAV Surveillance Tasks

• Tracking a vehicle with a team of UAVs

AFRL, www.aeryon.com

Planning in a Dynamic Environment

• Dynamic obstacles + complex tasks in a warehouse

• Q: How to compute an optimal control policy that guarantees a complex, logical task is completed?

Our Contributions

- Optimal control for non-deterministic systems with temporal logic specifications
- Polynomial time controller synthesis
- Anytime optimization

Cost function:	Average	Minimax	Task Cycle
Complexity:	POLY	POLY in task graph	EXP in task graph

Hierarchical Control Architecture

- We focus on the discrete planning layer
- Discrete plan is executed at continuous level

1. AlurHLP00, BeltaH06, HabetsCS06, KaramanF09, KloetzerB08, WongpiromsarnTM12, and more Eric M. Wolff (Caltech)

Non-deterministic Transition Systems

- A non-deterministic transition system (NTS) is a tuple T = (S, A, R, s₀, AP, L) with
 - states S,
 - actions A,
 - transition function R: S x A \rightarrow 2^S,
 - initial state s_0 ,

Non-deterministic Transition Systems

- A non-deterministic transition system (NTS) is a tuple T = (S, A, R, s₀, AP, L) with
 - states S,
 - actions A,
 - transition function R: S x A \rightarrow 2^S,
 - initial state s_0 ,
 - atomic propositions AP,
 - labeling function $L: S \rightarrow 2^{AP}$, and
 - non-negative valued cost function $c : S \times A \times S \rightarrow \Re$.

Control Policies

- Finite-memory control policy: $\mu: S \times M \rightarrow A \times M$
- Two-player game:
 - System picks action using control policy

- Environment picks next state

- $T^{\mu}\left(s\right)$: set of executions from state s under policy μ

Temporal Logic

- A logic for reasoning about how properties change over time
- Reason about infinite sequences $\sigma = s_0 s_1 s_2 \dots$ of states
- Propositional logic: \land (and), \lor (or), \implies (implies), \neg (not)
- Temporal operators: \mathcal{U} (until), \bigcirc (next), \Box (always), \diamondsuit (eventually)

Motion Planning

Dangerous liquid handling

Bomb disposal

Complex sequencing of actions

Temporal Logic

- A logic for reasoning about how properties change over time
- Reason about infinite sequences $\sigma = s_0 s_1 s_2 \dots$ of states
- Propositional logic: \land (and), \lor (or), \implies (implies), \neg (not)
- Temporal operators: \mathcal{U} (until), \bigcirc (next), \Box (always), \diamondsuit (eventually)

Motion Planning

Dangerous liquid handling

Bomb disposal

INTRACTABLE!

Specification Language

• We consider formulas of the form:

 $\varphi = \varphi_{safe} \wedge \varphi_{resp} \wedge \varphi_{per} \wedge \varphi_{task} \wedge \varphi_{resp}^{ss}$, where

$$\begin{split} \varphi_{\text{safe}} &\coloneqq \Box \psi_1, & \text{Safety} \\ \varphi_{\text{resp}} &\coloneqq \bigwedge_{j \in I_2} \Box (\psi_{2,j} \implies \bigcirc \phi_{2,j}), & \text{Response} \\ \varphi_{\text{per}} &\coloneqq \bigotimes \Box \psi_3, & \text{Stability} \\ \varphi_{\text{task}} &\coloneqq \bigwedge_{j \in I_4} \Box \diamondsuit \psi_{4,j}, & \text{Repeated tasks} \\ \varphi_{\text{resp}}^{\text{ss}} &\coloneqq \bigwedge_{j \in I_5} \diamondsuit \Box (\psi_{5,j} \implies \bigcirc \phi_{5,j}). & \text{Steady-state response} \\ \end{bmatrix}$$

Eric M. Wolff (Caltech)

Cost Functions

Generic cost function J

$$J:T^{\mu}(s) \to \mathbb{R}_{\geq 0}$$

- We consider:
 - Average cost
 - Minimax (bottleneck) cost
 - Average cost-per-task-cycle

Problem Statement

- Given:
 - Non-deterministic transition system T
 - Temporal logic specification $oldsymbol{\phi}$ of the form

 $\varphi = \varphi_{\text{safe}} \land \varphi_{\text{resp}} \land \varphi_{\text{per}} \land \varphi_{\text{task}} \land \varphi_{\text{resp}}^{\text{ss}}$

- Cost function J
- Problem: Create control policy μ such that that the set of runs T^μ(s₀) satisfies φ and minimizes J

 $\min_{\mu} J(T^{\mu}(s_0))$ st. $T^{\mu}(s_0) \vDash \varphi$

Related Work

- Automata-based approach [Vardi & Wolper]
 - Construct automaton from specification
 - EXP or 2-EXP in the specification

- Our approach
 - No automaton construction
 - Compute directly on the state space

Related Work

- Related logics:
 - GR(1): PitermanPS06, BloemJPPS12
 - GRabin(1): Ehlers11
 - AlurT04; MalerPS95
- Optimal control: JingEKG13
- How this work differs:

GR(1) system + stability

- More system properties/tasks than GR(1)
- Only bounded liveness assumptions on environment

Main Idea

- Optimization boils down to reasoning about worst-case costs between tasks
- Use value function and task graph for this

$$\varphi_{\text{task}} \coloneqq \bigwedge_{j \in I_4} \Box \diamondsuit \psi_{4,j}$$

Tasks: P, D0, D1, D2, D3

Value Function and Reachability

 V^c_B(s): minimum cost to reach set B from state s under all resolutions of the non-determinism

$$V_{B,\mathcal{T}}^c(s) = \min_{a \in A(s)} \max_{t \in R(s,a)} V_{B,\mathcal{T}}^c(t) + c(s,a,t)$$

Value Function and Reachability

 V^c_B(s): minimum cost to reach set B from state s under all resolutions of the non-determinism

$$V_{B,\mathcal{T}}^c(s) = \min_{a \in A(s)} \max_{t \in R(s,a)} V_{B,\mathcal{T}}^c(t) + c(s,a,t)$$

• Example

$$- V_{4}^{c}(1) = \infty$$
$$- V_{4}^{c}(2) = \infty$$
$$- V_{4}^{c}(3) = 1$$
$$- V_{4}^{c}(4) = 0$$

Task Graph

 Create new graph that encodes shortest paths between tasks

Tasks: A,B Cost = 2

Task Graph

 Create new graph that encodes shortest paths between tasks

Tasks: A,B Cost = 1.5

Including subsets in the task graph can reduce cost!

Task Graph

- Create new graph that encodes shortest paths between tasks
- Number of states
 - Deterministic: |F|
 - Non-deterministic: $\sum_{i \in I_4} 2^{|F_i|} 1$

Average Cost Function

Average cost of run σ is

$$J_{\text{avg}}'(\sigma,\mu(\sigma)) \coloneqq \limsup_{n \to \infty} \frac{\sum_{t=0}^{n} c(\sigma_t,\mu(\sigma_t),\sigma_{t+1})}{n}$$

• The average cost function is

$$J_{\operatorname{avg}}(\mathcal{T}^{\mu}(s)) \coloneqq \sup_{\sigma \in \mathcal{T}^{\mu}(s_0)} J'_{\operatorname{avg}}(\sigma, \mu(\sigma))$$

Average—Solution

- Policy has two parts:
 - 1) Optimal policy ignoring the tasks
 - 2) Visit all tasks once
- An optimal policy alternates
 - 12 112 1112....
 - Requires infinite memory
- We adapt an algorithm from Chatterjee, Henzinger, Jurdzinski 2006.
- Polynomial time

Minimax (bottleneck) Cost

• Minimax cost of run σ is

$$J_{\text{bot}}'(\sigma,\mu(\sigma)) \coloneqq \limsup_{i\to\infty} (\mathbb{T}_{\text{task}}(i+1) - \mathbb{T}_{\text{task}}(i))$$

where T_{task}(i) is the accumulated cost at the i-th completion of a task

• The minimax cost function is

$$J_{\text{bot}}(\mathcal{T}^{\mu}(s)) \coloneqq \max_{\sigma \in \mathcal{T}^{\mu}(s)} J'_{\text{bot}}(\sigma, \mu(\sigma))$$

Minimax—Solution

- Approach
 - Fix a cost λ

- Remove all edges with cost > λ from task graph
- Is remaining graph have a strongly connected component that includes all tasks?
- Binary search on $\boldsymbol{\lambda}$
- Polynomial time in task graph

Average Cost-Per-Task-Cycle

Average cost-per-task-cycle of run σ is

$$J_{TC}'(\sigma,\mu(\sigma)) \coloneqq \limsup_{n \to \infty} \frac{\sum_{t=0}^{n} c(\sigma_t,\mu(\sigma_t),\sigma_{t+1})}{\sum_{t=0}^{n} I_{TC}(t)}$$

 The average cost-per-task-cycle cost function is

$$J_{TC}(\mathcal{T}^{\mu}(s)) \coloneqq \max_{\sigma \in \mathcal{T}^{\mu}(s)} J'_{TC}(\sigma, \mu(\sigma))$$

Optimality for Task Cycle is Hard

- **Theorem**: Computing a control policy that is minimizes the average cost-per-task-cycle is NP-hard, even in the deterministic case.
- Proof: Construct a generalized traveling salesman problem where tasks are nodes in the TSP graph.

Task Cycle—Solution

• Assumption: The task ordering is fixed

- Solve generalized TSP on task graph
 - Use commercial solvers
 - Approximate solutions
- Solution gives optimal task ordering

Example: Pickup and Delivery

- System:
 - Robot and obstacle move to adjacent regions each step
- Specs:
 - Always avoid collisions
 - Repeatedly visit Pickup and Dropoff locations

			D0		
	Р				
			 S.		D2
					D3
(0)0					
				D1	

Example: Pickup and Delivery

- System:
 - Robot and obstacle move to adjacent regions each step
- Specs:
 - Avoid collisions
 - Repeatedly visit
 Pickup and Dropoff locations

Computation Time—Optimal Controller

Comparison to GR1 (feasible)

Conclusions

• Optimal control with temporal logic

Cost function:	Average	Minimax	Task Cycle
Complexity:	POLY	POLY in task graph	EXP in task graph

• Future work

– Receding horizon control **Dynamics** Abstraction NTS

Removing fixed-ordering assumption

Thank you!

- Contact: Eric M. Wolff
 - Email: ewolff@caltech.edu
 - Web: <u>www.cds.caltech.edu/~ewolff/</u>
- Funding: NDSEG fellowship, Boeing, AFOSR

