Optimal Control of Non-deterministic
Systems for a Fragment of Temporal Logic

Eric M. Wolff!
Ufuk Topcu? and Richard M. Murray?
1Caltech and 2UPenn

CDC

11 December 2013 é‘"‘
SINE MORIBUS

Modern Autonomous Systems

3 "_'.}7 i
Ry

—— i - - s 2

— : - http://www.andrewalliance.com/
Caltech NASA/JPL

 How to specify complex tasks?
* How to create optimal controllers?

e React to adversarial environment?

Eric M. Wolff (Caltech)

UAYV Surveillance Tasks

* Tracking a vehicle with a team of UAVs

-~
i

ROZ 2 (1-3)i:.. _-

- %
ROZ 3 (1-3) * T o

CP 1 9

AFRL, www.aeryon.com

Planning in a Dynamic Environment

 Dynamic obstacles + complex tasks in a warehouse

D1

 Q: How to compute an optimal control policy that
guarantees a complex, logical task is completed?

Eric M. Wolff (Caltech)

Our Contributions

* Optimal control for non-deterministic systems
with temporal logic specifications

* Polynomial time controller synthesis
* Anytime optimization

Cost function: Average Minimax Task Cycle

Complexity: POLY POLY in task EXP in task
graph graph

Eric M. Wolff (Caltech)

Hierarchical Control Architecture

{A} {B}
A .
C G
Dynamical system Discrete abstraction? Non-deterministic

transition system

 We focus on the discrete planning layer
* Discrete plan is executed at continuous level

1. AlurHLPOO, BeltaHO06, HabetsCS06, KaramanF09, KloetzerB08, WongpiromsarnTM12, and more

Eric M. Wolff (Caltech)

Non-deterministic Transition Systems

* A non-deterministic transition system (NTS) is a
tuple T=(S, A, R, s,, AP, L) with
— states S,
— actions A,
— transition function R: S x A — 23,
— initial state s,

Non-deterministic Transition Systems

* A non-deterministic transition system (NTS) is a
tuple T=(S, A, R, s,, AP, L) with
— states S,
— actions A,
— transition function R: S x A — 23,
— initial state s,
— atomic propositions AP,
— labeling function L : S — 24", and
— non-negative valued cost functionc:SxA xS — R.

{A} {B} {B,C}

Control Policies

* Finite-memory control policy: i: SxM > AxM
 Two-player game:

— System picks action using control policy

— Environment picks next state
e TH(s) : set of executions from state s under policy p

Temporal Logic

@ A logic for reasoning about how properties change over time
@ Reason about infinite sequences ¢ = sps1S> ... of states
@ Propositional logic: A (and), v (or), = (implies), - (not)

@ Temporal operators: U (until), O (next), O (always), < (eventually)

Motion Planning Dangerous liquid handling

Complex sequencing of actions

Eric M. Wolff (Caltech)

Temporal Logic

@ A logic for reasoning about how properties change over time
@ Reason about infinite sequences ¢ = sps1S> ... of states
@ Propositional logic: A (and), v (or), = (implies), - (not)

@ Temporal operators: U (until), O (next), O (always), < (eventually)

Motion Planning Dangerous liquid handling

" INTRACTABLE!

Eric M. Wolff (Caltech)

Specification Language

e We consider formulas of the form:

Ss
P = Psafe N Presp N Pper N Prask N Pregpy

where
Psafe = lea
Presp = /\ D(wlj — O¢2,j)a
qgels
Pper = & 0O 1037

Safety

Response
Stability

Repeated tasks

= /\ OO (1&5’3- — ©¢5’j). Steady-state response

Jj€ls

Cost Functions

e Generic cost function)

J:TH(s)—> R,

* We consider:
— Average cost
— Minimax (bottleneck) cost
— Average cost-per-task-cycle

Problem Statement

* Given:
— Non-deterministic transition system T
— Temporal logic specification ¢ of the form

sS
P = Psafe N Presp N Pper N Prask N Presp

— Cost function J

* Problem: Create control policy n minu](TH(SO)
such that that the set of runs T¥(s,) u
satisfies ¢p and minimizes J st. T (S0)|: @

Related Work

* Automata-based approach [vardi & wolper]

— Construct automaton from specification
— EXP or 2-EXP in the specification

* Our approach
— No automaton construction

— Compute directly on the state space

Related Work

* Related logics:
— GR(1): pitermanPS06, BloemJPPS12

— GRabin(1): Ehlers11
— AlurT04; MalerPS95

e Optimal control: JingexG13

: , ‘GR(1) system + stability
e How this work differs:

— More system properties/tasks than GR(1)
— Only bounded liveness assumptions on environment

Main Idea

* Optimization boils down to reasoning about
worst-case costs between tasks

* Use value function and task graph for this

Prask = /\ 0o 2p4,j

gely

Tasks: P, DO, D1, D2, D3

Value Function and Reachability

* V¢ (s): minimum cost to reach set B from state s
under all resolutions of the non-determinism

VS +(s)= min max V& (t) +c(s,a,t
B’T() acA(s) teR(s,a) B’T() ()

Value Function and Reachability

* V¢ (s): minimum cost to reach set B from state s
under all resolutions of the non-determinism

Vs +(s) = min max Vi (t)+c(s,a,t
B’T() acA(s) teR(s,a) B’T() ()

 Example
— Ve, (1) = o0
— V&, (2) = o0
—V5,(3) =1
—V<,(4)=0

Task Graph

* Create new graph that encodes shortest paths

between tasks
Tasks: A,B

Cost=2

Task Graph

* Create new graph that encodes shortest paths

between tasks
Tasks: A,B

Cost=1.5

[{A}

- - - -
7

Including subsets in the task graph can reduce cost!

Task Graph

* Create new graph that encodes shortest paths

between tasks /\ o1
k =] 4.9
 Number of states Pas el /
— Deterministic: |F|

— Non-deterministic: 2 ey, AU

[{A}

- - -
7

Average Cost Function

* Average costof runois

avg(g ,LL(O')) = lim sup Zt:O C(Ota /L(O-t)v O-t+1)

N — 0o /A’

 The average cost function is

Tag(TH(5)) = sup Tyl ()
oeTH(s0)

Average—Solution

* Policy has two parts:
1) Optimal policy ignoring the tasks
2) Visit all tasks once

* An optimal policy alternates
— 12112 1112....

— Requires infinite memory

 We adapt an algorithm from Chatterjee,
Henzinger, Jurdzinski 2006.

* Polynomial time

Minimax (bottleneck) Cost

* Minimax cost of run o is
Jéot(o-v ,u(()')) += hm Sup(TtaSk(i T 1) - TtaSk(i))
1—> 00
where T, (i) is the accumulated cost at the i-th
completion of a task

* The minimax cost function is

Foor(TH(s)) 1= max o (0, 1(0))

Minimax—Solution

* Approach

— Fix a cost A

— Remove all edges with cost > A from task graph

— Is remaining graph have a strongly connected
component that includes all tasks?

— Binary search on A I {A}

* Polynomial time in task graph

o m o = o -

Eric M. Wolff (Caltech)

Average Cost-Per-Task-Cycle

* Average cost-per-task-cycle of run o is

/ : Z?:o C(Ut,M(Ut)yUtH)
Jro(o, (o)) = imsup —

 The average cost-per-task-cycle cost function
1S

Jrc(TH(s)) := jmax Jre (o, (o)) A

Optimality for Task Cycle is Hard

* Theorem: Computing a control policy that is
minimizes the average cost-per-task-cycle is
NP-hard, even in the deterministic case.

* Proof: Construct a generalized traveling
salesman problem where tasks are nodes in

the TSP graph.

Task Cycle—Solution

* Assumption: The task ordering is fixed

* Solve generalized TSP on task graph
— Use commercial solvers
— Approximate solutions

e Solution gives optimal task ordering

Example: Pickup and Delivery

* System:

— Robot and obstacle
move to adjacent
regions each step

* Specs:

— Always avoid collisions

— Repeatedly visit Pickup
and Dropoff locations

Example: Pickup and Delivery

Computation Time—Optimal Controller

* System: o
— n=10 (1.8k states)
—_ RObOt and - - - n=14 (14k states)
o0r .. n=18 (50k states) T
obstacle move to i
adjacent regions o
each step 3 40/
* Specs: E 2o -
— Avoid collisions L
— Repeatedly visit T
. o === -
Pickup and Dropoff | _.—--- - -
locations s 3 & 5 & 7 %

Dropoff locations

Comparison to GR1 (feasible)

Grid size (n)
60 141516 17 18 19 20 21 22 23 24
501 1
40
= Previous Our work
Q
)
3 30 1
£
|_
20 1
10 — Our work |
—/— grlc
—— jtlv

0 50 100 150 200 250 300
Number of states (thousands)

Eric M. Wolff (Caltech)

Conclusions

* Optimal control with temporal logic

Cost function:

Average

Complexity:

e Future work

— Receding horizon contro| PYnamics Abstraction

POLY

Minimax Task Cycle
POLY in task EXP in task
graph graph
’ o) 8}
. & A,
Vv w
g7 C %

NTS

— Removing fixed-ordering assumption

Eric M. Wolff (Caltech)

Thank you!

* Contact: Eric M. Wolff
— Email: ewolff@caltech.edu @EHEI”GO

— Web: www.cds.caltech.edu/~ewolff/

&)
* Funding: NDSEG fellowship, Boeing, AFOSR §/AFDSR

Eric M. Wolff (Caltech)

