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Abstract— Motivated by robotic motion planning, we de-
velop a framework for control policy synthesis for both non-
deterministic transition systems and Markov decision processes
that are subject to temporal logic task specifications. We
introduce a fragment of linear temporal logic that can be
used to specify common motion planning tasks such as safe
navigation, response to the environment, persistent coverage,
and surveillance. This fragment is computationally efficient; the
complexity of control policy synthesis is a doubly-exponential
improvement over standard linear temporal logic for both non-
deterministic transition systems and Markov decision processes.
This improvement is possible because we compute directly on
the original system, as opposed to the automata-based approach
commonly used. We give simulation results for representative
motion planning tasks and compare to generalized reactivity(1).

I. INTRODUCTION

As autonomous vehicles and robots are used more widely,
it is important for users to be able to accurately and concisely
specify tasks. Additionally, given a task and a system, one
would like to automatically synthesize a control policy that
guarantees that the system will complete the specified task.
In this context, we consider the problem of control policy
synthesis in the presence of an adversarial environment that
behaves either non-deterministically or probabilistically.

A widely used task specification language is linear tem-
poral logic (LTL). LTL allows one to reason about how
system properties change over time, and thus specify a wide
variety of tasks, such as safety (always avoid B), response
(if A, then B), persistence (eventually always stay in A), and
recurrence (infinitely often visit A). While LTL is a powerful
language for specifying system properties, the complexity of
synthesizing a control policy that satisfies an LTL formula
is doubly-exponential in the formula length for both non-
deterministic and probabilistic systems [1], [2].

Temporal logics have been used to specify desired behav-
iors for robots and hybrid systems for which controllers can
then be automatically synthesized. A common approach is
to abstract the original continuous system as a finite discrete
system, such as a non-deterministic transition system or a
Markov decision process (MDP). Sampling-based motion
planning techniques can be used for nonlinear systems to
create a deterministic transition system that approximates
the system, for which a satisfying control policy can be
computed [3], [4]. A framework for abstracting a linear

Eric M. Wolff and Richard M. Murray are with the Department of Control
and Dynamical Systems, California Institute of Technology, Pasadena, CA.
Ufuk Topcu is with the Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA. The corresponding author is
ewolff@caltech.edu

system as a discrete transition system and then constructing
a control policy that guarantees that the original system
satisfies an LTL specification is presented in [5]. Reactive
control policies are synthesized for linear systems in the
presence of a non-deterministic environment in [6], and a
receding horizon framework is used in [7] to handle the
resulting blow-up in system size. Finally, control policies
are created for Markov decision processes that represent a
robots with noisy actuators for both LTL [8] and PCTL [9].

Motivated by robot motion planning, we introduce a
fragment of LTL that can be used to specify tasks such as safe
navigation, response to the environment, persistent coverage,
and surveillance. For this fragment, we create control policies
in time polynomial in the size of the system by computing
reachable sets directly on the original system (as opposed
to on the product of the system and a property automaton).
The underlying algorithms are quite simple and the approach
scales well. Preliminary experiments indicate that it outper-
forms standard implementations of generalized reactivity(1)
(GR(1)) [10] on some motion planning problems.

There has been much interest in determining fragments
of LTL that are computationally efficient to reason about.
Fragments of LTL that have exponential complexity for
control policy synthesis were analyzed in [11]. In the context
of timed automata, certain fragments of LTL have been
used for efficient control policy synthesis [12]. The GR(1)
fragment can express many tasks, and control policies can be
synthesized in time polynomial in the size of the system [10].
This fragment is extended to generalized Rabin(1), which is
the largest fragment of specifications for which control policy
synthesis can be done efficiently [13].

Our main contribution is an expressive fragment of LTL
for efficient control policy synthesis for non-deterministic
transition systems and Markov decision processes. A uni-
fied approach for control policy synthesis is presented that
covers representative tasks and modeling frameworks. The
algorithms used are simple and do not require detailed
understanding of automata theory. The fragment that we use
is effectively a Rabin acceptance condition, which allows us
to compute directly on the system.

II. PROBLEM FORMULATION

In this section we give background and introduce the main
problem. An atomic proposition is a statement that is either
True or False . The cardinality of a set X is denoted by ∣X ∣.



A. System model

We use finite transition systems and MDPs (introduced
in Section VI) to model the system behavior. In robotics,
however, one is usually concerned with continuous systems.
This gap is partially bridged by constructive procedures for
abstracting relevant classes of continuous systems as finite
transition systems [14], [15]. Additionally, sampling-based
methods, such as rapidly-exploring random trees [16] and
probabilistic roadmaps [17], build a finite transition system
that approximates a continuous system [3], [4].

Definition 1. A (finite) non-deterministic transition system
(NTS) is a tuple T = (S,A,R, s0,AP,L) consisting of a
finite set of states S, a finite set of actions A, a transition
function R ∶ S×A→ 2S , an initial state s0 ∈ S, a set of atomic
propositions AP , and a labeling function L ∶ S → 2AP .

Let A(s) denote the set of available actions at state s.
Denote the parents of the states in the set S′ ⊆ S by
Parents(S′) ∶= {s ∈ S ∣ ∃a ∈ A(s) and R(s, a)∩S′ ≠ ∅}. The
set Parents(S′) includes all states in S that can (possibly)
reach S′ in a single transition.

We assume that the transition system is non-blocking, i.e.,
∣R(s, a)∣ ≥ 1 for each state s ∈ S and action a ∈ A(s).

A deterministic transition system (DTS) is a non-
deterministic transition system where ∣R(s, a)∣ = 1 for each
state s ∈ S and action a ∈ A(s). A run σ = s0s1s2 . . . of the
transition system is an infinite sequence of its states, where
si ∈ S is the state of the system at index i (also denoted
σi) and for each i = 0,1, . . ., there exists a ∈ A(si) such
that si+1 ∈ R(si, a). A word is an infinite sequence of labels
L(σ) = L(s0)L(s1)L(s2) . . . where σ = s0s1s2 . . . is a run.

A memoryless control policy for a non-deterministic tran-
sition system T is a map µ ∶ S → A, where µ(s) ∈ A(s)
for state s ∈ S. A finite-memory control policy is a map
µ ∶ S ×M → A ×M where the finite set M is called the
memory and µ(s,m) ∈ A(s) ×M for state s ∈ S and mode
m ∈M . A control policy selects an action deterministically.

Given a state s ∈ S and action a ∈ A(s), there may
be multiple possible successor states in the set R(s, a),
i.e., ∣R(s, a)∣ > 1. A single successor state t ∈ R(s, a)
is non-deterministically selected. We interpret this selection
(or action) as an uncontrolled (adversarial) environment
resolving the non-determinism. A different interpretation of
the environment will be given for MDPs in Section VI.

The set of runs of T with initial state s ∈ S induced by a
control policy µ is denoted by T µ(s).

B. Linear temporal logic

We use a fragment of linear temporal logic (LTL) to con-
cisely and unambiguously specify desired system behavior.
We begin by defining LTL, from which our fragment will
inherit syntax and semantics. A comprehensive treatment of
LTL is given in [18].

Syntax: LTL includes: (a) a set of atomic propositions,
(b) the propositional connectives: ¬ (negation) and ∧ (con-
junction), and (c) the temporal modal operators: # (next)
and U (until). Other propositional connectives such as

∨ (disjunction) and Ô⇒ (implication) and other temporal
operators such as ◇ (eventually), ◻ (always), ◻◇ (infinitely
often), and ◇◻ (eventually forever) can be derived.

An LTL formula is defined inductively as follows: (1) any
atomic proposition is an LTL formula, (2) given formulas ϕ1

and ϕ2, ¬ϕ1, ϕ1 ∧ ϕ2, #ϕ1, and ϕ1 U ϕ2 are LTL formulas.
Semantics: An LTL formula is interpreted over an infinite

sequence of states. Given an infinite sequence of states
σ = s0s1s2 . . . and a formula ϕ, the semantics are defined
inductively as follows: (i) for atomic proposition p, si ⊧ p
if and only if (iff) p ∈ L(si); (ii) si ⊧ ¬ϕ iff si ⊭ ϕ;
(iii) si ⊧ ϕ ∧ ψ iff si ⊧ ϕ and si ⊧ ψ; (iv) si ⊧ #ϕ
iff si+1 ⊧ ϕ; and (v) si ⊧ ϕ U ψ iff ∃j ≥ i s.t. sj ⊧ ψ
∀k ∈ [i, j) and sk ⊧ ϕ.

A propositional formula ψ is composed of only atomic
propositions and propositional connectives. We denote the
set of states where ψ holds by [[ψ]].

An infinite sequence of states σ = s0s1s2 . . . satisfies the
LTL formula ϕ, denoted by σ ⊧ ϕ, if s0 ⊧ ϕ. The system T
under control policy µ satisfies the LTL formula ϕ at state
s ∈ S, denoted T µ(s) ⊧ ϕ if and only if σ ⊧ ϕ for all
σ ∈ T µ(s). Given a system T , state s ∈ S is winning for ϕ
if there exists a control policy µ such that T µ(s) ⊧ ϕ. Let
W ⊆ S denote the set of winning states.

C. Problem Statement
We now formally state the main problem of the paper and

give an overview of our solution approach.

Problem 1. Given a non-deterministic transition system
T with initial state s0 and an LTL formula ϕ, determine
whether there exists a control policy µ such that Tµ(s0) ⊧ ϕ.
Return the control policy µ if it exists.

Problem 1 is intractable in general. Determining if there
exists such a control policy takes time doubly-exponential
in the length of ϕ [2]. Thus, we consider a fragment of
LTL for which polynomial time solutions to Problem 1 exist.
We will introduce such a fragment in Section II-D and
solve Problem 1 for formulas of this form. We begin by
solving Problem 1 for the special case of a deterministic
transition system in Section IV. While this discussion is
subsumed by that for the non-deterministic transition system,
it allows for stronger results. We solve Problem 1 for non-
deterministic transition systems in Section V. Finally, we
solve an analogous problem for MDPs in Section VI.

D. A fragment of LTL
We now introduce a fragment of LTL that can specify a

wide range motion planning tasks such as safe navigation,
immediate response to the environment, persistent coverage,
and surveillance. We consider formulas of the form

ϕ = ϕsafe ∧ ϕact ∧ ϕper ∧ ϕrec, (1)

where

ϕsafe ∶= ◻p1, ϕact ∶= ⋀
j∈I2

◻(p2,j Ô⇒ #q2,j),

ϕper ∶=◇◻ p3, ϕrec ∶= ⋀
j∈I4

◻◇ p4,j



and p1 ∶= ⋀j∈I1 p1,j and p3 ∶= ⋀j∈I3 p3,j with ⋀j∈I1 ◻p1,j =
◻⋀j∈I1 p1,j and ⋀j∈I3 ◇◻p3,j =◇◻⋀j∈I3 p3,j , respectively.
In the above definitions, I1, . . . , I4 are finite index sets and
pi,j and qi,j are propositional formulas for any i and j.

Remark 1. Guarantee and obligation, i.e., ◇p and ◻(pÔ⇒
◇q) respectively (where p and q are propositional formulas),
are not included in (1). We show how to include these
specifications in Section VIII-A. It is also natural to consider
specifications that are disjunctions of formulas of the form
(1). We give conditions for this extension in Section VIII-B.

Remark 2. The fragment in formula (1) is clearly a strict
subset of LTL. This fragment is incomparable to other
commonly used temporal logics, such as computational tree
logic (CTL and PCTL), and GR(1). The fragment that we
consider allows persistence (◇◻) to be specified, which
cannot be specified in either CTL or GR(1). However, it
cannot express existential path quantification as in CTL or
allow disjunctions of formulas as in GR(1) [10], [18]. The
fragment is part of the generalized Rabin(1) logic [13] and
the µ-calculus of alternation depth two [19].

III. PRELIMINARIES

A. Acceptance conditions

We now give acceptance conditions from classical au-
tomata theory [20] for the LTL fragment introduced in
Section II-D. These acceptance conditions are critical to the
development in this paper, as much of the later analysis
depends on them. Effectively, we reason about satisfaction
of LTL formulas in terms of set operations between a run σ
of T = (S,A,R, s0,AP,L) and subsets of S where partic-
ular propositional formulas hold. We first define acceptance
conditions for a run and then extend it to a system T .

Definition 2. Let σ be a run of the system T , Inf(σ) denote
the set of states that are visited infinitely often in σ, and
Vis(σ) denote the set of states that are visited at least once in
σ. Given propositional formulas ϕ and ψ, relate satisfaction
of an LTL formula with acceptance conditions as follows

● σ ⊧ ◻ϕ iff Vis(σ) ⊆ [[ϕ]],
● σ ⊧◇◻ ϕ iff Inf(σ) ⊆ [[ϕ]],
● σ ⊧ ◻◇ ϕ iff Inf(σ) ∩ [[ϕ]] ≠ ∅,
● σ ⊧ ◻(ψÔ⇒ #ϕ) iff σi ∈ [[ψ]] or σi+1 ∉ [[ϕ]] for all i.

A run satisfies a conjunction of LTL formulas if and
only if it satisfies all corresponding acceptance conditions.
Acceptance for a system T is extended over runs in the
obvious manner.

In automata theory, ◻◇ϕ is called a Büchi acceptance con-
dition and ◇◻ϕ is called a co-Büchi acceptance condition.
The conjunction of both a Büchi and a co-Büchi acceptance
condition is a Rabin acceptance condition with one pair [20].

An example is given in Figure 1. The non-deterministic
transition system T has states S = {1,2,3,4}; labels L(1) =
{A}, L(2) = {C}, L(3) = {B}, L(4) = {B,C}; a single
action called 0; and transitions R(1,0) = {2,3}, R(2,0) =
{2}, R(3,0) = {4}, R(4,0) = {4}. From the acceptance
conditions, it follows that states {2,4} are winning for

Fig. 1. Example of a non-deterministic transition system

formula ◻(A ∨ C), states {2,3,4} are winning for formula
◻(A Ô⇒ #B), states {1,2,3,4} are winning for formula
◻ ◇ C, and states {3,4} are winning for formula ◇ ◻ B.
State 4 is winning for all of the formulas above.

B. Graph Theory

We will often consider a non-deterministic transition sys-
tem as a graph with the natural bijection between the states
and transitions of the transition system and the vertices and
edges of the graph. Let G = (S,R) be a directed graph
(digraph) with vertices S and edges R. Let there be an edge
e from vertex s to vertex t if and only if t ∈ R(s, a) for some
a ∈ A(s). A walk w is a finite edge sequence w = e0e1 . . . ep.
Denote the set of all nodes visited along walk w by Vis(w).

A digraph G = (S,R) is strongly connected if there exists
a path between each pair of vertices s, t ∈ S no matter how
the non-determinism is resolved. A digraph G′ = (S′,R′)
is a subgraph of G = (S,R) if S′ ⊆ S and R′ ⊆ R. The
subgraph of G restricted to states S′ ⊆ S is denoted by G∣S′ .
A digraph G′ ⊆ G is a strongly connected component if it is
a maximal strongly connected subgraph of G.

C. Reachability

We define controlled reachability in a non-deterministic
transition system T with a value function. Let B ⊆ S be a
set of states that the controller wants the system to reach. Let
the controlled value function for system T and target set B
be a map V cB,T ∶ S → N ∪∞, whose value V cB,T (s) at state
s ∈ S is the minimum (over all possible control policies)
number of transitions needed to reach the set B, given the
worst-case resolution of the non-determinism. If the value
V cB,T (s) = ∞, then the non-determinism can prevent the
system from reaching set B from state s ∈ S. For example,
consider the system in Figure 1 with B = {4}. Then, V cB(1) =
∞, V cB(2) =∞, V cB(3) = 1, and V cB(4) = 0.

The value function satisfies the optimality condition

V cB,T (s) = min
a∈A(s)

max
t∈R(s,a)

V cB,T (t) + 1, (2)

for all s ∈ S. Algorithm 1 computes the value function by
backwards iteration from the target set B in O(∣S∣ + ∣R∣)
time. At every iteration, a state is assigned a finite value if
it can reach a state with a finite value in a single transition,
no matter how the non-determinism is resolved.

An optimal control policy µB for reaching the set B is
implicitly encoded in a value function V cB,T that satisfies
(2). Optimal control policies are memoryless for reachability
[21]. Such a policy can be computed at each state s ∈ S as

µB(s) = argmin
a∈A(s)

max
t∈R(s,a)

V cB,T (t) + 1. (3)



Algorithm 1 Value function (controlled)
Input: NTS T , set B ⊆ S
Output: The (controlled) value function V cB,T
V cB,T (s)← 0 for all s ∈ B; V cB,T (s)←∞ for all s ∈ S−B
while B ≠ ∅ do
C ← ∅
for {s ∈ Parents(B) ∣ V cB,T (s) =∞} do
V cB,T (s)←mina∈A(s)maxt∈R(s,a) V cB,T (t) + 1
if V cB,T (s) <∞ then
C ← C ∪ {s}

B ← C
return V cB,T

We use the value function to define the controllable
predecessor set for a given system T with target set B ⊆ S.
Let

CPre∞T (B) ∶= {s ∈ S ∣ V cB,T (s) <∞} (4)

be the set of all states that can reach a state in B for any
resolution of the non-determinism.

We define forced reachability similarly. Let the forced
value function for system T and target set B be a map
V fB,T ∶ S → N ∪ ∞, whose value V fB,T (s) at state s ∈ S
is the maximum (over all possible control policies) number
of transitions before reaching the set B. The forced value
function satisfies the optimality condition

V fB,T (s) = max
a∈A(s)

max
t∈R(s,a)

V fB,T (t) + 1. (5)

For a given system T with target set B ⊆ S, the forced
predecessor set

FPre∞T (B) ∶= {s ∈ S ∣ V fB,T (s) <∞}, (6)

is the set of all states from which no control policy can avoid
reaching a state in B.

Remark 3. We consider the case where the controller selects
an action, and then the environment selects the next state.
Our results easily extend to the case, used in GR(1) [10],
where the environment first resolves the non-determinism
(selects an action) and then the controller selects its action.

Remark 4. It is not necessary to compute the exact value
function at each state when computing the predecessor sets,
only whether it is finite or infinite.

IV. SOLUTION FOR DETERMINISTIC TRANSITION
SYSTEMS

We first create control policies for deterministic transition
systems. We will compute the winning set W ⊆ S for
each specification separately and then combine them in
Algorithm 2. Recall that T is originally non-blocking.

First, remove all actions from T that do not satisfy the
next-step response specification ϕact = ⋀j∈I2 ◻(p2,j Ô⇒
#q2,j). For each j ∈ I2, remove an action a ∈ A(s) from
a state s ∈ S if s ∈ [[p2,j]] and R(s, a) /⊆ [[q2,j]]. Let B ⊆ S
contain all states that are blocking (due to the removal of an
action). Create the subgraph Tact ∶= T ∣S−FPre∞T (B).

Proposition 1. A state is in Tact if and only if it is winning
for ϕact.

Proof: An action is removed from T if and only if
it directly violates the acceptance condition for ϕact. All
blocking states, i.e., those in B ⊆ S, must use an action that
was removed. Thus, the set FPre∞T (B) contains all and only
states that violate the acceptance condition for ϕact. Tact is
non-blocking, so any run of the system satisfies ϕact. ∎

Next, remove the states that violate the safety speci-
fication ϕsafe = ◻p1 by creating the subgraph Tsafe ∶=
T ∣S−FPre∞T (S−[[p1]]).

Proposition 2. A state is in Tsafe if and only if it is winning
for ϕsafe.

Proof: The acceptance condition for ϕsafe is Vis(σ) ⊆
[[p1]]. The set FPre∞T (S − [[p1]])) contains a state if and
only if it either is not in [[p1]] and or cannot avoid visiting
a state not in [[p1]]. Tsafe is non-blocking, so any run of the
system satisfies ϕsafe. ∎

Incorporate the persistence specification ϕper = ◇ ◻ p3
by creating the subgraph Tper ∶= T ∣S−FPre∞T (S−[[p3]]). The
winning set is CPre∞T (Sper), where Sper is the set of states
in Tper.

Proposition 3. A state is in Tper if it is winning for ϕper.

Proof: As in Proposition 2, but with acceptance con-
dition Inf(σ) ⊆ [[p3]]. ∎

We now compute the winning set for the recurrence
specification ϕrec = ⋀j∈I4 ◻ ◇ p4,j by computing the sets
of states that can be visited infinitely often.

Proposition 4. Let σ be a run of T . If states s, t ∈ Inf(σ),
then they must be in the same strongly connected component.

Proof: By definition of Inf(σ), states s and t are visited
infinitely often. Thus, there must exist a walk starting at s
and ending at t and vice versa. Thus, s and t are in the same
strongly connected component. ∎

The strongly connected components of T can be computed
in O(∣S∣ + ∣R∣) time using Tarjan’s algorithm [22]. Let
SCC(Tper) be the set of all strongly connected components
of Tper that have at least one transition between states
in the component. A strongly connected component C ∈
SCC(Tper) is accepting if C ∩ [[p4,j]] ≠ ∅ for all j ∈ I4. Let
A be the set of all accepting strongly connected components
and SA ∶= {s ∈ S ∣ s ∈ C for some C ∈ A}. Every state in an
accepting strongly connected component is in the winning
set W ∶= CPre∞T (SA).

Proposition 5. A state is in SA if it is winning for ϕrec.

Proof: The relevant acceptance condition is Inf(σ) ∩
[[p4,j]] ≠ ∅ for all j ∈ I4. By definition, every state in C ∈ A
can be visited infinitely often. Since C ∩ [[p4,j]] ≠ ∅ for all
j ∈ I4, the result follows. ∎

We now give an overview of our approach for control
policy synthesis for deterministic transition systems in Al-
gorithm 2. Optionally, remove all states from T that cannot



be reached from the initial state s0 in O(∣S∣ + ∣R∣) time
using breadth-first search from s0 [22]. Compute the set of
states W that are winning for ϕ (lines 1-5). If the initial
state s0 ∉ W , then no control policy exists (lines 6-8). If
s0 ∈W , compute a walk on Tsafe from s0 to a state t ∈ C for
some accepting strongly connected component C ∈ A and
where t ∈ ⋃j∈I4[[p4,j]] (lines 9-10). Compute a walk σsuf
starting and ending at state t such that Vis(σsuf)∩[[p4,j]] ≠ ∅
for all j ∈ I4 and Vis(σsuf) ⊆ C (line 11). The control
policy is implicit in the (deterministic) run σ = σpre(σsuf)ω ,
where ω denotes infinite repetition. The total complexity of
the algorithm is O(∣I2∣(∣S∣ + ∣R∣)) to check feasibility and
O((∣I2∣+ ∣I4∣)(∣S∣+ ∣R∣)) to compute a control policy, where
the extra term is for computing σsuf. Note that any policy
that visits every state in C infinitely often (e.g., randomized
or round-robin) could be used to avoid computing σsuf.

Algorithm 2 Overview: Synthesis for DTS
Input: DTS T , s0 ∈ S, formula ϕ
Output: Run σ

1: Compute Tact
2: Tsafe ← Tact∣S−FPre∞Tact

(S−[[p1]])
3: Tper ← Tsafe∣S−FPre∞Tsafe

(S−[[p3]])
4: A ∶= {C ∈ SCC (Tper) ∣ C ∩ [[p4,j]] ≠ ∅ ∀j ∈ I4}
5: SA ∶= {s ∈ S ∣ s ∈ C for some C ∈ A}
6: if s0 ∉W ∶= CPre∞Tsafe

(SA) then
7: return “no satisfying control policy exists”
8: end if
9: Pick state t ∈ C for some C ∈ A and t ∈ ⋂j∈I4[[p4,j]]

10: Compute walk σpre from s0 to t s.t. Vis(σpre) ⊆W
11: Compute walk σsuf from t to t, s.t. Vis(σsuf) ⊆ C ⊆ W

and Vis(σsuf) ∩ [[p4,j]] ≠ ∅ ∀j ∈ I4
12: return σ = σpre(σsuf)ω

V. NON-DETERMINISTIC TRANSITION SYSTEM

We now discuss control policy construction for non-
deterministic transition systems, which subsumes the devel-
opment in Section IV. Our approach here differs primarily
in the form of the control policy and how to determine the
set of states that satisfy the recurrence formula, ϕrec.

We address formulas for ϕact, ϕsafe, and ϕper in a similar
manner as Section IV because both the set FPre∞ and the
subgraph operation are already defined for non-deterministic
transition systems.

Next, consider the recurrence specification ϕrec =
⋀j∈I4 ◻◇p4,j . An approach similar to the strongly connected
component decomposition in Section IV could be used, but
it is less efficient to compute due to the non-determinism.
Büchi (and the more general parity) acceptance conditions
have been extensively studied [10], [20].

Proposition 6. Algorithm 3 computes the winning set for
ϕrec.

Proof: To satisfy the acceptance condition Inf(σ) ∩
[[p4,j]] ≠ ∅ for all j ∈ I4, Fi ⊆ CPre∞T (Fj) must hold

for all i, j ∈ I4 for some Fj ⊆ [[p4,j]]. Algorithm 3 initializes
Fj ∶= [[p4,j]] for all j ∈ I4 and iteratively removes states from
Fi that are not in CPre∞T (Fj) for all i, j ∈ I4. It terminates
when Fi ⊆ CPre∞T (Fj) holds for all i, j ∈ I4 or Fi = ∅ for
some i ∈ I4, i.e., the winning set is empty. At every iteration,
it removes at least one state in F = ⋃j∈I4 Fj or terminates.
∎

The outer while loop runs at most ∣F ∣ iterations. Dur-
ing each iteration, the outer for loop computes CPre∞T
and runs the inner for loop ∣I4∣ times. The inner for
loop takes O(∑j∈I4 ∣Fj ∣) time to perform the set inter-
sections. Thus, the total complexity of Algorithm 3 is
O(∣F ∣∣I4∣(∣S∣ + ∣R∣ +∑j∈I4 ∣Fj ∣)).

Algorithm 3 BUCHI (T ,{[[p4,1]], . . . , [[p4,∣I4∣]]})
Input: NTS T , [[p4,j]] ⊆ S for j ∈ I4
Output: Winning set W ⊆ S
Fj ∶= [[p4,j]] for all j ∈ I4; update ← True
while update do

update ← False
for i ∈ I4 do

for j ∈ I4 do
if Fj /⊆ CPre∞T (Fi) then

update ← True
Fj ← Fj ∩CPre∞T (Fi)
if Fj = ∅ then

return W ← ∅, Fj for all j ∈ I4
return W ← CPre∞T (F1), Fj for all j ∈ I4

We now overview our approach for control policy synthe-
sis for non-deterministic transition systems in Algorithm 4.
Compute the set W of states that are winning for ϕ (lines 1-
6). If the initial state s0 ∉W , then no control policy exists. If
s0 ∈W , compute the memoryless control policies µj induced
from V cFj ,Tsafe

for all j ∈ I4 (line 10, also see Algorithm 3).
The finite-memory control policy µ is defined as follows
by switching between memoryless policies depending on
the current “target.” Let j ∈ I4 denote the current target
set Fj . The system uses control policy µj until a state
in Fj is visited. Then, the system updates its “target” to
k = (j + 1 mod ∣I4∣) + 1 and uses control policy µk until a
state in Fk is visited, and so on. The total complexity of the
algorithm is O(α(∣S∣ + ∣R∣) + β), where F = ⋃j∈I4[[p4,j]],
α = ∣I2∣ + ∣I4∣∣F ∣, and β = ∣I4∣∣F ∣∑j∈I4 ∣Fj ∣.

VI. MARKOV DECISION PROCESSES

We now consider the Markov decision process (MDP)
model. MDPs provide a general framework for modeling
non-determinism (e.g., system actions) and probabilistic
(e.g., environment actions) behaviors that are present in
many real-world systems. We interpret the environment dif-
ferently than in previous sections; it acts probabilistically
through a transition probability function instead of non-
deterministically. We sketch an approach for control policy
synthesis for formulas of the form ϕ = ϕsafe ∧ ϕper ∧ ϕrec
using techniques from probabilistic model checking [18].
This terse presentation will be extended in later publications.



Algorithm 4 Overview: Synthesis for NTS
Input: Non-deterministic TS T and formula ϕ
Output: Control policy µ

1: Compute Tact
2: Tsafe ← Tact∣S−FPre∞(S−[[p1]])
3: Tper ← Tsafe∣S−FPre∞(S−[[p3]])
4: P ∶= {[[p4,1]], . . . , [[p4,∣I4∣]]}
5: SA, F ∶= {F1, . . . , F∣I4∣}← BUCHI(Tper, P )
6: W ∶= CPre∞Tsafe

(SA)
7: if s0 ∉W then
8: return “no satisfying control policy exists”
9: end if

10: µj ← control policy induced by V cFj ,Tsafe
for all j ∈ I4

11: return {µ1, . . . , µ∣I4∣} {set of control policies}

Definition 3. A (finite) labeled MDP M is the tuple
M = (S,A,P, s0,AP,L), consisting of a finite set of states
S, a finite set of actions A, a transition probability function
P ∶ S ×A × S → [0,1], an initial state s0, a finite set of
atomic propositions AP , and a labeling function L ∶ S →
2AP . Let A(s) denote the set of available actions at state
s. Let ∑s′∈S P (s, a, s′) = 1 if a ∈ A(s) and P (s, a, s′) = 0
otherwise. We assume, for notational convenience, that the
available actions A(s) are the same for every s ∈ S.

A run of the MDP is an infinite sequence of its states,
σ = s0s1s2 . . . where si ∈ S is the state of the system at
index i and P (si, a, si+1) > 0 for some a ∈ A(si). The set
of runs ofM with initial state s induced by a control policy
µ (as defined in Section II-A) is denoted by Mµ(s). There
is a probability measure over the runs in Mµ(s) [18].

Given a run of M, the syntax and semantics of LTL is
identical to Section II-B. However, satisfaction for an MDP
M under a control policy µ is now defined probabilistically
[18]. Let P(Mµ(s) ⊧ ϕ) denote the expected satisfaction
probability of LTL formula ϕ by Mµ(s).

Problem 2. Given an MDP M with initial state s0 and
an LTL formula ϕ, compute the control policy µ∗ =
argmaxµ P(Mµ(s0) ⊧ ϕ), over all possible finite-memory,
deterministic policies.

The value function at a state now has the interpretation
as the maximum probability of the system satisfying the
specification from that state. Let B ⊆ S be a set from which
the system can satisfy the specification almost surely. The
value VB,M(s) of a state s ∈ S is the probability that the
MDPM will reach set B ⊆ S when using an optimal control
policy starting from state s ∈ S.

We first compute the winning set W ⊆ S for the LTL
formula ϕ = ϕsafe ∧ ϕper ∧ ϕrec. The probability of satisfying
ϕ is equivalent to the probability of reaching an accepting
maximal end component [18]. Informally, accepting maximal
end components are sets of states that the system can
remain in forever and where the acceptance condition of ϕ
is satisfied almost surely. These sets can be computed in
O(∣S∣∣R∣) time using graph search [18]. The winning set

TABLE I
COMPLEXITY OF CONTROL POLICY SYNTHESIS

Language DTS NTS MDP
Frag. (1) O(∣ϕ∣∣T ∣) O(α∣T ∣ + β) O(LP(∣T ∣))
GR(1) O(∣ϕ∣∣S∣∣R∣) O(∣ϕ∣∣S∣∣R∣) N/A

LTL O(∣T ∣2(∣ϕ∣)) O(∣T ∣22
(∣ϕ∣)
) O(LP(∣T ∣)22

(∣ϕ∣)
)

W ⊆ S is the union of all states that are in some accepting
maximal end component.

A. Reachability

Once we have computed the winning set W ⊆ S where
the system can satisfy the specification ϕ almost surely, we
need to reach W from the initial state s0. Let Msafe be the
sub-MDP (defined similarly to Section III-B, see [18]) where
all states satisfy ϕsafe. The set S1 = CPre∞(W ) contains all
states that can satisfy ϕ almost surely. Let Sr be the set of
states that have positive probability of reaching W , which
can be computed by graph search [18]. The remaining states
S0 = S − (S1 ∪ Sr) cannot reach W and thus have zero
probability of satisfying ϕ. Initialize V cB(s) = 1 for all s ∈ S1,
V cB(s) = 0 for all s ∈ S0, and V cB(s) ∈ (0,1) for all s ∈ Sr.
It remains to compute the value function, i.e. the maximum
probability of satisfying the specification, for each state in
Sr. This computation boils down to a standard reachability
problem that can be solved by linear programming or value
iteration [18], [21].

B. Control policy

The control policy for maximizing the probability of satis-
fying the LTL formula ϕ consists of two parts: a memoryless
deterministic policy for reaching an accepting maximal end
component, and a finite-memory deterministic policy for
staying there. The former policy is computed from V cB,M and
denoted µreach. The latter policy is a finite-memory policy µB
that selects actions to ensure that the system stays inside the
accepting maximal end component forever and satisfies ϕ by
visiting every state infinitely often [18]. The control policy
µ∗ is µ∗ = µreach if s ∉ B and µ∗ = µB if s ∈ B.

VII. COMPLEXITY

We summarize out complexity results and compare them
with those for synthesis with LTL specifications and the
GR(1) fragment of it [10]. In our analysis, we assume that
set membership is determined in constant time with a hash
function [22]. Let ∣T ∣ = ∣S∣+∣R∣ denote the size of the system,
F = ⋃j∈I4[[p4,j]], α = ∣I2∣+ ∣I4∣∣F ∣, and β = ∣I4∣∣F ∣∑j∈I4 ∣Fj ∣.
Let ∣ϕ∣ = ∣I2∣ + ∣I4∣ for fragment (1), ∣ϕ∣ = mn for a GR(1)
formula with m assumptions and n guarantees, and ∣ϕ∣ be the
length of formula ϕ for LTL [18]. Let LP(∣T ∣) denote that the
complexity is polynomial in ∣T ∣, specifically that of solving
a linear program. For typical motion planning specifications,
∣F ∣ ≪ ∣S∣, ∑j∈I4 ∣Fj ∣ ≪ ∣S∣, and ∣ϕ∣ is small. We use the
non-symbolic complexity results for GR(1) in [10]. Results
are summarized in Table I.

Remark 5. Fragment (1) is not handled well by standard
approaches. Using the popular software ltl2ba [23], we



created Büchi automaton for LTL formulas of the form ϕact.
The automaton size and time to compute it both increased
exponentially with the number of conjunctions in ϕact.

VIII. EXTENSIONS

We discuss two natural extensions to the fragment in
formula (1). The first is includes guarantee and obligation
properties, and the second includes disjunctions of formulas.

A. Guarantee and obligation

While guarantee and obligation, i.e., ◇p and ◻(pÔ⇒◇q)
respectively (where p and q are propositional formulas),
specifications are not explicitly included in (1), they can
be incorporated by introducing new system variables, which
exponentially increases the system size [7]. Even including
conjunctions of guarantee formulas is NP-complete [24].

Another approach is to use the stricter specifications ◻◇
p for guarantee and ◻¬p ∨ ◻ ◇ q for obligation. The ◻◇
formulas are part of the fragment in (1), and disjunctions
can be included in some cases (see Section VIII-B). If the
transition system is strongly connected, then these stricter
formulas are feasible if and only if the original formulas are.
Strong connectivity is a natural assumption in many robotics
applications. For example, an autonomous car can typically
drive around the block to revisit a location.

B. Disjunctions of specifications

We now consider an extension to specifications that are
disjunctions of formulas of the form (1).

For a deterministic transition system, a control policy for
a formula given by disjunctions of formulas of the form (1)
can be computed by independently solving each individual
subformula using the algorithms given earlier in this section.

Proposition 7. Let ϕ = ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn, where ϕi is
a formula of the form (1) for i = 1, . . . , n. Then, there exits
a control policy µ such that T µ(s) ⊧ ϕ if and only if there
exists a control policy µ such that T µ(s) ⊧ ϕi for some
i = 1, . . . , n.

Proof: Sufficiency is obvious. For necessity, assume
that there exists a control policy µ such that T µ(s) satisfies
ϕ. The set T µ(s) contains a single run σ since T is
deterministic. Thus, σ satisfies ϕi for some i = 1, . . . , n.

For non-deterministic transition systems, necessity in
Proposition 7 no longer holds because the non-determinism
may be resolved in multiple ways and thus independently
evaluating each subformula may not work.

Algorithm 5 is a sound, but not complete, procedure
for synthesizing a control policy for a non-deterministic
transition system with a specification given by disjunctions of
formulas of the form (1). Arbitrary disjunctions of this form
are intractable to solve exactly, as this extension subsumes
Rabin games which are NP-complete [25].

Algorithm 5 computes winning sets Wi ⊆ S for each
subformula ϕi and checks if the initial state can reach their
union W ∶= ⋃ni=1Wi. The control policy µreach is used until
a state s ∈Wi is reached for some i, after which µi is used.

Algorithm 5 DISJUNCTION
Input: NTS T , formula ϕi, i = 1, . . . , n
Output: Winning set W ⊆ S and control policy µ
Wi ⊆ S and µi ← winning states and control policy for ϕi
W ← ⋃ni=1Wi

if s0 ∉ CPre∞T (W) then
return µ = ∅

µreach ← control policy induced by V cW,T
return µreach and µi for all i

Fig. 2. Left: Diagram of a 10 x 10 deterministic grid. Only white cells
are labeled ’stockroom.’ Right: Diagram of a 10 x 10 non-deterministic grid
with a dynamic obstacle (obs) that moves within the shaded region.

IX. EXAMPLES

The following examples demonstrate the techniques de-
veloped in Sections IV and V for tasks motivated by robot
motion planning in a planar environment (see Figure 2). We
defer an example for Section VI due to space limitations.
Computations were done in Python on a dual-core Linux
desktop with 2 GB of memory. All computation times were
averaged over five randomly generated problem instances.
Including the transition system construction roughly doubled
the computation time in these examples.

A. Deterministic transition system

Consider a gridworld where a robot occupies a single
cell at a time and can choose to either remain in its
current cell or move to one of four adjacent cells at
each step. We consider square grids with static obstacle
densities of 15 percent. The set of atomic propositions is
AP = {pickup,dropoff, storeroom,obs}. The robot’s task
is to eventually remain in the stockroom while repeatedly
visiting a pickup and a dropoff location. The robot must
never collide with a static obstacle. This task is formalized
by the LTL formula ϕ =◇◻stockroom ∧ ◻◇pickup ∧ ◻◇
dropoff ∧ ◻¬obs, which is in fragment (1).

Results are shown in Figure 3. A corresponding non-
deterministic Büchi automaton for ϕ has four states [23].
Thus, the standard automata-based approach for LTL would
do similar graph search computations on a graph four times
larger than the transition system.

B. Non-deterministic transition system

We now consider a similar setup as in Section IX-A, but
with a dynamically moving obstacle. The state of the system
is the product of the robot’s location and the obstacle’s
location, both of which can move as previously described for



Fig. 3. Control policy synthesis times for deterministic grids.

Fig. 4. Control policy synthesis times for non-deterministic grids.

the robot. The robot selects an action and then the obstacle
non-deterministically moves. The robot’s task is to repeatedly
visit a pickup and a dropoff location while never colliding
with an obstacle. This task is formalized by the LTL formula
ϕ = ◻◇ pickup ∧ ◻◇ dropoff ∧ ◻¬obs, which is in both
fragment (1) and GR(1) [10].

Results are shown in Figure 4. We compare our algorithm
to two implementations (jtlv and gr1c as used in [26]) of
the GR(1) synthesis method from [10]. Our algorithms scale
significantly better; neither the jtlv or gr1c implementation
was able to solve a problem with over 100 thousand states.

X. CONCLUSIONS

We presented a framework for control policy synthesis for
both non-deterministic transition systems and Markov deci-
sion processes that are subject to temporal logic task specifi-
cations. Our approach for control policy synthesis is straight-
forward and efficient, both theoretically and according to
our preliminary experimental results. It offers a promising
alternative to the commonly used GR(1) specifications as it
can express many relevant tasks for multiple system models.

Future work will extend the synthesis algorithms here
to create optimal control policies for systems with cost
functions. Incremental synthesis methods for computing the
reachable sets also appear promising. Finally, detailed exper-
imental analysis is needed to compare practical performance
to GR(1) and automata-based methods.
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