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Abstract— We develop a method for the control of discrete-
time nonlinear systems subject to temporal logic specifications.
Our approach uses a coarse abstraction of the system and an
automaton representing the temporal logic specification to guide
the search for a feasible trajectory. This decomposes the search
for a feasible trajectory into a series of constrained reachability
problems. Thus, one can create controllers for any system for
which techniques exist to compute (approximate) solutions to
constrained reachability problems. Representative techniques
include sampling-based methods for motion planning, reachable
set computations for linear systems, and graph search for
finite discrete systems. Our approach avoids the expensive
computation of a discrete abstraction, and its implementation is
amenable to parallel computing. We demonstrate our approach
with numerical experiments on temporal logic motion planning
problems with high-dimensional (10+ states) continuous sys-
tems.

I. INTRODUCTION

We consider the problem of automatically synthesizing
controllers for discrete-time nonlinear systems with temporal
logic task specifications. We are motivated by safety-critical
applications involving autonomous ground and air vehicles
carrying out complex tasks. These systems have nonlinear
dynamics and require behaviors (e.g. safety, response, per-
sistence, recurrence, and guarantee) that can be specified with
temporal logic. These behaviors generalize traditional point-
to-point motion planning [1]. Figure 1 shows an example
temporal logic motion planning problem.

Common approaches to temporal logic motion planning
construct a finite discrete abstraction of the dynamical system
[2]–[4]. An abstraction of a system is a partition of the con-
tinuous state space into a finite number of abstract states, i.e.,
sets of system states, with transitions between abstract states
that represent possible system behaviors. Finite abstractions
are typically expensive to compute, conservative, and not
guided by the underlying specification (see [2]–[8]).

Instead of blindly doing expensive reachability compu-
tations to construct an abstraction of a dynamical system,
we use a coarse abstraction of the system and perform con-
strained reachability checks as needed for the task. We first
create an existential abstraction, which is a finite abstraction
of the system where transitions between abstract states are
assumed to exist, but have yet not been verified, e.g., through
reachability computations, to exist in the system. We then
create a product automaton from the finite-state abstraction
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Fig. 1. Sketch of a system trajectory that satisfies the temporal logic
specification ϕ =◇A ∧ ◻◇B ∧ ◻◇C ∧ ◻S.

and an automaton representing the underlying specification.
The product automaton guides reasoning about complicated
temporal logic properties as a sequence of simple temporal
properties that can be analyzed using constrained reacha-
bility techniques. This sequence of constrained reachability
problems is called an abstract plan. However, the system
might not be able to follow a given abstract plan since
dynamic constraints were not considered in the existential
abstraction. Thus, we check the abstract plan with the
continuous dynamics by solving a sequence of constrained
reachability problems. If this sequence is infeasible, the
product automaton is updated and a new abstract plan is
generated.

This approach lets one take advantage of the signifi-
cant work in computing constrained reachability relations
over continuous state spaces. The related literature includes
robotic motion planning [1], optimization-based methods
for trajectory generation [9]–[11], and PDE-based methods
[12]. Exactness in computing constrained reachability is not
critical; we will only require a sound technique.

Our main contribution is a general framework for synthe-
sizing controllers for nonlinear dynamical systems subject to
temporal logic specifications. Our approach is independent
of the specific techniques used to compute constrained reach-
ability, and is amenable to parallel computing. Despite the
framework’s generality, it is also computationally powerful,
as we show with examples that improve on state-of-the-
art techniques for temporal logic motion planning for high-
dimensional (10+ states) continuous systems.

Our work is part of the counterexample-guided abstraction
refinement (CEGAR) framework [13]–[15]. Here, an abstract
model of the system is checked to see if the specification
holds. If the check fails, then the abstraction is refined based
on a counterexample (e.g. a system trajectory) generated
during the check. Our approach differs in that we associate



weights with the abstraction and use them to update a ranking
of promising abstract plans.

Our work is also related to that on combining task and
motion planning [2], [16]–[21]. These approaches first com-
pute an abstract plan and then use sampling-based motion
planning techniques to check if the plan satisfies the dynamic
constraints. This idea is applied to co-safe linear temporal
logic specifications in [2], [18], [19]. Our approach is ag-
nostic to the method used to check constrained reachability
and applies to a wider class of specifications.

Our approach is also related to the specification-guided
work in [22] where they compute feedback controllers. We
consider more general systems and specifications. Finally,
coarse bisimulations of discrete-time piecewise-affine sys-
tems based on temporal logic specifications are computed in
[23]. Our approach focuses on controller synthesis and does
not require the exact computation of reachable sets for the
system.

II. PRELIMINARIES

In this section we give background on the system model
and specification language. An atomic proposition is a state-
ment that is either True or False . The cardinality of a set
X is denoted by ∣X ∣.

A. System model

We consider discrete-time nonlinear systems of the form

xt+1 = f(xt, ut), t = 0,1, . . . , (1)

where x ∈ X ⊆ Rnc × {0,1}nl are the continuous and binary
states, u ∈ U ⊆ Rmc × {0,1}ml are the inputs, and x0 ∈ X is
the initial state. The system is called the concrete system to
distinguish it from its abstraction, which will be introduced
in Section III-A.

Let AP be a finite set of atomic propositions. The labeling
function L ∶ X → 2AP maps the continuous part of each state
to the set of atomic propositions that are True . The set of
states where atomic proposition p holds is denoted by [[p]].

A run (trajectory) x = x0x1x2 . . . of system (1) is an
infinite sequence of its states, where xt ∈ X is the state of
the system at index t and for each t = 0,1, . . ., there exists
a control input ut ∈ U such that xt+1 = f(xt, ut). A word is
an infinite sequence of labels L(x) = L(x0)L(x1)L(x2) . . .
where x = x0x1x2 . . . is a run. Given an initial state x0
and a control input sequence u, the resulting run x(x0, u) is
unique.

B. Specification language

We use temporal logic to concisely and unambiguously
specify desired system behaviors such as response, liveness,
safety, stability, priority, and guarantee [24]. We consider ω-
regular languages, which are regular languages extended by
infinite repetition (denoted by ω). All ω-regular languages
are accepted by non-deterministic Büchi automata (hereafter
called Büchi automata). Figure 2 shows an example Büchi
automaton.

Fig. 2. A (simplified) Büchi automaton corresponding to the LTL formula
ϕ =◇A ∧ ◻◇B ∧ ◻◇C ∧ ◻S (stated without definition). Informally,
the system must visit A, repeatedly visit B and C, and always remain in
S. Here Q = {q0, q1, q2, q3}, Σ = {A,B,C,S}, Q0 = {q0}, F = {q3},
and transitions are represented by labeled arrows.

Definition 1. A Büchi automaton is a tuple
A = (Q,Σ, δ,Q0, F ) consisting of (i) a finite set of
states Q, (ii) a finite alphabet Σ, (iii) a transition relation
δ ⊆ Q ×Σ ×Q, (iv) a set of initial states Q0 ⊆ Q, (v) and a
set of accepting states F ⊆ Q.

Let Σω be the set of infinite words over Σ. A run for
σ = Σ0Σ1Σ2 . . . ∈ Σω denotes an infinite sequence q0q1q2 . . .
of states in A such that q0 ∈ Q0 and (qi,Σi, qi+1) ∈ δ for
i ≥ 0. Run q0q1q2 . . . is accepting (accepted) if qi ∈ F for
infinitely many indices i ∈ N appearing in the run.

Intuitively, a run is accepted by a Büchi automaton if an
accepting state, i.e., a state in F , is visited infinitely often.

We will use linear temporal logic (LTL) to specify tasks
in our examples. LTL is an ω-regular language, and every
LTL formula ϕ can be automatically translated into a corre-
sponding Büchi automaton Aϕ [24].

C. Problem statement

We now formally state the main problem of the paper and
give an overview of our solution approach.

Problem 1. Given a dynamical system of the form (1) with
initial state x0 ∈ X and a Büchi automatonA representing the
specification, determine whether there exists a control input
sequence u such that the word L(x(x0, u)) is accepted by
A. Return the control u if it exists.

Problem 1 is undecidable in general due to the dynamics
over a continuous state space [5]. Thus, we consider sound,
but not complete, solutions. Our approach is to create an
existential finite abstraction T of the system that does not
necessarily check constrained reachability between states in
T . Then, we create a product automaton by combining T
with a Büchi automaton A. An accepting run in the product
automaton is an abstract plan. However, an abstract plan
may be infeasible due to dynamic constraints. We check the
corresponding sequence of constrained reachability problems
to see if it is dynamically feasible (see Section IV). If a
trajectory is not found, we update the product automaton
and search for a new abstract plan. This process is repeated
until a feasible trajectory is found, or no more abstract plans
exist.



Remark 1. Our general automaton-guided approach may be
extended to feedback control of systems with disturbances
either by 1) assuming that the disturbances do not change the
word, i.e., the sequence of labels, or 2) using an appropriate
deterministic automaton.

III. THE ABSTRACT MODEL

We now describe an existential finite abstraction T . This
abstract model over-approximates reachability of the con-
crete system, i.e., it might produce behaviors that the con-
crete system cannot execute. We then combine this abstract
model of the system with the Büchi automaton representing
the specification.

A. Existential abstraction

We use a transition system to represent the existential
abstraction of a concrete system.

Definition 2. A deterministic (finite) transition system is a
tuple T = (S,R, s0,AP,L) consisting of a finite set of states
S, a transition relation R ⊆ S × S, an initial state s0 ∈ S,
a set of atomic propositions AP , and a labeling function
L ∶ S → 22

AP

.

We use the finite transition system model to define an
existential abstraction T for the concrete system as fol-
lows. We partition the concrete system’s state space into
equivalence classes of states and associate an abstract state
s ∈ S with each equivalence class. The concretization map
C ∶ S → X ⊆ X maps each abstract state to a subset of the
concrete system’s state space.

The abstraction T is existential in the sense that there is
an abstract transition (s, t) ∈ R if there exists a control input
such that the system evolves from some concrete state in
C(s) to some concrete state in C(t) in finite time. Thus,
the existential abstraction T is an over-approximation of the
concrete system in the sense that it contains more behaviors,
i.e., a series of transitions might exist for the abstraction that
does not exist for the concrete system.

Remark 2. A partition is proposition preserving if, for every
abstract state s ∈ S and every atomic proposition p ∈ AP ,
p ∈ L(u) if and only if p ∈ L(v) for all concrete states
u, v ∈ C(s) [5]. We do not require that the abstract states
used in creating the existential abstraction T are proposition
preserving, which necessitates the non-standard definition of
the labeling function.

B. Product automaton

We use a slight modification of the product automaton
construction [25] to represent runs that are allowed by the
transition system and satisfy the specification.

Definition 3. Let T = (S,R, s0,AP,L) be a transition
system and A = (Q,2AP , δ,Q0, F ) be a Büchi automaton.
The weighted product automaton P = T × A is the tuple
P = (SP , δP , FP , sP,0,APP , LP ,wP), consisting of

(i) a finite set of states SP = S ×Q,

(ii) a transition relation δP ⊆ SP × SP , where
((s, q), (s′, q′)) ∈ δP if and only if (s, s′) ∈ R and
there exists an L ∈ L(s) such that (q,L, q′) ∈ δ,

(iii) a set of accepting states FP = S × F ,
(iv) a set of initial states SP,0, with (s0, q0) ∈ SP,0 if q0 ∈

Q0,
(v) a set of atomic propositions APP = Q,

(vi) a labeling function LP ∶ S ×Q→ 2Q, and
(vii) a non-negative valued weight function wP ∶ δP → R.

A run σP = (s0, q0)(s1, q1) . . . is accepting if (si, qi) ∈ FP
for infinitely many indices i ∈ N. The projection of a run
σP = (s0, q0)(s1, q1) . . . in the product automaton P is the
run σ = s0s1 . . . in the transition system T .

We will often consider an automaton as a graph with the
natural bijection between the states and transitions of the
automaton and the vertices and edges of the graph. Let G =
(S,R) be a directed graph with vertices S and edges R.
There exists an edge e from vertex s to vertex t if and only
if t ∈ δ(s, a) for some a ∈ Σ. A walk w is a finite edge
sequence w = e0e1 . . . ep. A cycle is a walk where e0 = ep.

It is well-known that if there exists an accepting run in
P , then there exists an accepting run of the form σP =
σpre(σsuf)ω , where σpre is a finite walk in P and σsuf is a
finite cycle in P [24]. For an accepting run σP , the suffix
σsuf is a cycle in the product automaton P that satisfies the
acceptance condition, i.e., it includes an accepting state. The
prefix σpre is a finite run from an initial state sP,0 to a state
on an accepting cycle. We call σP an abstract plan.

IV. CONCRETIZING AN ABSTRACT PLAN

Given an abstract plan, it is necessary to check if it is fea-
sible for the concrete system. We first define the constrained
reachability problem, and then show how to compose these
problems to check the feasibility of an abstract plan.

A. Set-to-set constrained reachability

We now define the set-to-set constrained reachability
problem, which is a key component of our solution approach.

Definition 4. Consider a concrete system of the form (1)
with given sets X1,X2 ⊆ X , a non-negative integer horizon
length N , and a control input sequence u. Set X2 is con-
strained reachable (under control u) through set X1, denoted
by X1 ↝X1 X2, if there exist x1, . . . , xN−1 ∈ X1, xN ∈ X2

such that xt+1 = f(xt, ut) for t = 1, . . . ,N − 1.

Constrained reachability problem: Given a system of the
form (1) and sets X1,X2 ⊆ X , find a control input sequence
u and a non-negative integer horizon length N such that
X1 ↝X1 X2. Return control u if it exists.

Solving a constrained reachability problem is generally
undecidable [5]. However, there exist numerous sound al-
gorithms that compute solutions to constrained reachability
problems. Sampling-based algorithms are probabilistically
or resolution complete [1]. Optimization-based methods are
used for state constrained trajectory generation for nonlinear
[9], [10] and linear [11] systems. Computationally expensive
PDE-based methods are generally applicable [12]. Finally,



for a discrete transition system, computing constrained reach-
ability is simply graph search [24].

We make the standing assumption that there exists an
oracle for computing a sound solution to a constrained
reachability problem for the system. We denote this method
by CSTREACH(X1,X2,N), with constraint set X1, reach
set X2, and horizon length N ∈ N. For a given query,
CSTREACH returns YES or NO. YES returns a control input,
and NO means that a control input does not exist.

Algorithm 1 CSTREACH(X1,X2,N )
Input: Sets X1,X2 ⊆ X , and horizon N ∈ N
Output: YES and control input u, NO

Note that the CSTREACH oracle is sound but not complete.
If it does not return a solution after a given amount of
computation time, nothing about the constrained reachability
problem can be inferred: the problem could be infeasible or
feasible but require more computation time.

B. Concretization of abstract plans

The concrete plan is the set of constrained reachability
problems corresponding to the transitions along an abstract
plan σ = σpre(σsuf)ω . Each transition ((s, q), (s′, q′)) ∈ δP
encodes a constrained reachability problem (see Section IV-
A) for the concrete system. We enforce that the system
remains in state (s, q) until it eventually reaches state (s′, q′).
Let L1 ∈ L(s) correspond to the set of atomic propositions
so that (q,L1, q) ∈ δ, and L2 ∈ L(s) correspond to the
set of atomic propositions so that (q,L2, q

′) ∈ δ. Let
X1 = [[L1]] if there exists the transition ((s, q), (s, q)) ∈
δP or else X1 = ∅, and X2 = C(s′) ∩ [[L2]]. Then,
the existence of a concrete transition corresponding to the
abstract transition ((s, q), (s′, q′)) can be checked by solving
CSTREACH(X1,X2,N ), for a given horizon length N . These
CSTREACH problems are concatenated along the abstract
plan in the obvious manner with a loop closure constraint
for the repeated suffix.

We demonstrate the concatenation of CSTREACH prob-
lems on the example in Figure 1. We assume that
there is a single abstract state s in the existential ab-
straction, and thus consider transitions (q, q′) instead of
((s, q), (s′, q′)). An abstract plan is given by q0(q1q2q3)ω
where σpre = q0 and σsuf = q1q2q3. Let xijk denote the
kth continuous state along the transition from state qi
to qj . The sequence of states for this abstract plan is
x011 , . . . , x

01
N , x

12
1 , . . . , x

12
N , x

23
1 , . . . , x

23
N , x

31
1 , . . . , x

31
N , where

x121 = f(x31N , u) for some u ∈ U is the loop closure constraint.
The corresponding state constraints for the sequence of
CSTREACH problems are x011 , . . . , x

01
N−1 ∈ [[S]], x01N ∈ [[A ∧

S]], x121 , . . . , x12N−1 ∈ [[S]], x12N ∈ [[B ∧ S]], x231 , . . . , x23N−1 ∈
[[S]], x23N ∈ [[C ∧ S]], and x311 , . . . , x

31
N−1 ∈ [[∅]], x31N ∈ [[S]].

V. SOLUTION

We outline our solution to Problem 1 and discuss tradeoffs
regarding the levels of granularity of the existential abstrac-
tion. Note that if the specification is given as an LTL formula

ϕ, a corresponding Büchi automaton A can be automatically
computed using standard software [26].

A. The solution algorithm

We now overview our solution approach as detailed in
Algorithm 2. First, create an existential abstraction T of the
concrete system as described in Section III-A. We discuss
tradeoffs on this construction in Section V-B. Then, construct
the product automaton P = T ×A.

The problem is now to find an abstract plan in P that is
implementable by the concrete system. Compute a minimal
weight abstract plan in P , e.g., using Dijkstra’s algorithm.
As there are an exponential number of paths in P , it is
important to only select the most promising plans. We do
this with heuristic weights on transitions in P . The weights
wP represent the likelihood that the corresponding abstract
transition in P corresponds to a concrete transition, i.e., that
CSTREACH returns a feasible control input. For example,
these weights could be the expected necessary horizon length
for the CSTREACH problem or the size of the corresponding
constraint sets. Using weights contrasts with most methods
in the literature (with notable exceptions [2], [19]), which
perform expensive reachability computations ahead of time
to ensure that all transitions in the product automaton can be
executed by the concrete system.

Given an abstract plan, it must be checked with respect
to the system dynamics. Each abstract plan corresponds to a
sequence of constrained reachability problems as detailed in
Section IV. If the concrete plan if feasible, then a control
input is returned. Otherwise, mark the path as infeasible
and update the weights in P . A simple approach is to
increase the weight of each edge along the infeasible path
by a constant. Additionally, one may compute constrained
reachability along a subpath of the infeasible path in an
attempt to determine a specific transition that is the cause.
There might not be a single transition that invalidates a path,
though. Invalidated paths are stored in a set so that they are
not repeated. The algorithm then computes another abstract
plan until either a feasible control input is found or every
path in P is checked.

A benefit of this simple approach is that it is easy to
parallelize. A central process can search for abstract plans in
the product automaton and then worker processes can check
constrained reachability on them. The workers report their
results to the central process, which then modifies its search
accordingly. There are interesting tradeoffs between search-
ing for accepting plans and checking individual transitions
in P and they are the subject of future work.

B. Tradeoffs

We now discuss some tradeoffs between different lev-
els of granularity in the existential abstraction. Contrary
to the counterexample-guided abstraction refinement frame-
work [27], we assume that the number of states in the
abstraction is fixed. Instead, we use information from con-
strained reachability computations to update a ranking over
abstract plans.



Algorithm 2 Solution overview
Input: Dynamical system, Büchi aut. A, pathLimit ∈ N
Output: Feasible control input u

1: Compute existential abstraction T of concrete system
2: Create product automaton P = T ×A
3: Assign heuristic weights to transitions of P
4: checkedPaths = ∅; paths = 0
5: while paths < pathLimit do
6: paths + = 1
7: Compute σP = σpre(σsuf)ω , the current minimum

weight abstract plan not in checkedPaths
8: Check constrained reachability problem CSTREACH

corresponding to abstract plan
9: if CSTREACH returns YES then

10: return control input u
11: else
12: Add plan σP to checkedPaths
13: (Optional) Check CSTREACH of sub-paths σP
14: Increase weights on transitions along σP
15: end if
16: end while

We will consider varying levels of abstraction in which
there is: a single state, a state for each atomic proposition,
a state for each polytope in a polytopic partition of the
state space, or a state for a given set of discrete points.
A natural question is when to use a fine or coarse ab-
straction. Informally, a coarse abstraction requires solving
a small number of large constrained reachability problems,
while a fine abstraction requires solving a large number of
small constrained reachability problems. Additionally, it may
be easier to compose solutions to constrained reachability
problems on a fine abstraction than a coarse abstraction, as
the initial and final sets are smaller. Selecting the appropriate
level of abstraction is directly related to the difficulty of
solving constrained reachability problems of different sizes.

The coarsest abstraction of the system contains only a
single state with a self transition. It is labeled with every
label that corresponds to a concrete state. Thus, the product
automaton is the Büchi automaton. This case is conceptually
appealing as it imposes no discretization of the system, and
results in a minimal number of abstract plans that must be
checked by constrained reachability. A predicate abstraction
is the next coarsest abstraction. This abstraction maps every
set of atomic propositions to an abstract state [14]. Thus, the
abstraction only depends on the system’s labels. A polytopic
abstraction assumes that the state space has been partitioned
into polytopes. The finest level is when a set of concrete
states are abstract states, as in [28] and sampling-based
methods [2], [18], [29].

The above discussion can be viewed as a continuum
of abstractions that depend on the largest volume of the
state space corresponding to an abstract state. Intuitively, it
should become easier to concatenate solutions of constrained
reachability problems as the size of state space corresponding
to each abstract state shrinks. In the limit, when each

abstract state maps to a single concrete state, all constrained
reachability problems can be concatenated.

This continuum of abstractions leads to a novel way of
thinking about abstraction refinement. First consider an ab-
straction where each abstract state maps to a single concrete
state, as in sampling-based motion planning. If a feasible
solution cannot be found with this abstraction, one can
iteratively expand each abstract state to include a larger set
of concrete states until a feasible control input can be found.
In the limit, the abstract states would partition the state
space. This is in contrast to typical counterexample-guided
abstraction refinement approaches [27] since the abstraction
becomes coarser instead of finer.

VI. COMPLEXITY

Given an existential abstraction T with state set S and a
Büchi automaton A, the product automaton P has O(∣S∣∣A∣)
states. There may be an exponential number of accepting
runs (i.e., abstract plans) in P that must be checked via
constrained reachability computations. The complexity of
checking a constrained reachability problem depends on the
system under consideration.

Proposition 1. Algorithm 2 is complete in the sense that it
will return every accepting run in P .

As there may be an exponential number of accepting runs,
completeness is mostly a theoretical curiosity. Our approach
depends on having good heuristic weights on the product
automaton transitions.

Remark 3. A Büchi automaton Aϕ representing the LTL
formula ϕ has worst-case size O(2∣ϕ∣) [24].

VII. AN APPLICATION TO NONLINEAR SYSTEMS IN
POLYGONAL ENVIRONMENTS

We now discuss an application of our framework to nonlin-
ear systems with atomic propositions that can be represented
as the unions of polyhedra. We will solve the constrained
reachability problems using mixed-integer linear program-
ming. Mixed-integer linear constraints let one specify that the
system is in a certain non-convex region (union of polyhedra)
at each time step.

A. A mixed-integer formulation of constrained reachability
We assume that each propositional formula ψ is repre-

sented by a union of polyhedra. The finite index set Iψ

lists the polyhedra where ψ is True . The i-th polyhedron
is {x ∈ X ∣ Hψix ≤ Kψi}, where i ∈ Iψ . Thus, the
set of states where atomic proposition ψ is True is given
by [[ψ]] = {x ∈ X ∣Hψix ≤Kψi for some i ∈ Iψ}. This set
is the finite union of polyhedra (finite conjunctions of half-
spaces), and it may be non-convex.

For propositional formula ψ and time t, introduce binary
variables zψit ∈ {0,1} for all i ∈ Iψ . Let M be a vector of
sufficiently large constants. The big-M formulation

Hψixt ≤Kψi +M(1 − zψit ), ∀i ∈ Iψ

∑
i∈Iψ

zψit = 1



enforces the constraint that xt ∈ [[ψ]].
The constrained reachability problem

CSTREACH(ψ1, ψ2,N) can then be encoded with the
big-M formulation so that xt ∈ [[ψ1]] for t = 1, . . . ,N − 1
and xN ∈ [[ψ2]]. One can specify a fixed horizon length,
N , for each set of constrained reachability problems, or can
leave the horizon length as a free variable. Additionally, one
can decompose the problem by first computing an accepting
loop and then computing a prefix that reaches this loop from
the initial state, instead of computing both simultaneously.
In both cases, the former approach is computationally more
efficient, but can miss feasible solutions.

B. System dynamics
As the mixed-integer linear constraints in Section VII-A

are over a sequence of continuous states, they are indepen-
dent of the specific system dynamics. Thus, this formula-
tion extends to any deterministic nonlinear system that is
amenable to finite-dimensional optimization [9], including
small-time locally controllable systems [1]. We highlight two
other useful classes of nonlinear systems where the dynamics
can be encoded using mixed-integer linear constraints.

Mixed logical dynamical systems
Mixed logical dynamical (MLD) systems have both con-

tinuous and discrete-valued states and allow one to model
nonlinearities, logic, and constraints [30]. They include con-
strained linear systems, linear hybrid automata, and piece-
wise affine systems. An MLD system is of the form

xt+1 = Axt +B1ut +B2δt +B3zt

subject to E2δt +E3zt ≤ E1ut +E4xt +E5,

where t = 0,1, . . ., x ∈ X ⊆ Rnc ×{0,1}nl are the continuous
and binary states, u ∈ U ⊆ Rmc ×{0,1}ml are the inputs, and
δ ∈ {0,1}rl and z ∈ Rrl are auxiliary binary and continuous
variables, respectively. The system matrices A, B1, B2, B3,
E1, E2, E3, E4, and E5 are of appropriate dimension. We
assume that the system is deterministic and well-posed (see
Definition 1 in [30]).

Differentially flat systems
A system is differentially flat if there exists a set of outputs

such that all states and control inputs can be determined
from these outputs without integration. If a system has states
x ∈ Rn and control inputs u ∈ Rm, then it is flat if one can
find outputs y ∈ Rm of the form y = y(x,u, u̇, . . . , u(p)) such
that x = x(y, ẏ, . . . , y(q)) and u = u(y, ẏ, . . . , y(q)). Thus,
one can plan trajectories in output space and then map these
to control inputs.

Differentially flat systems may be encoded using mixed
integer linear constraints in certain cases, e.g., the flat
output is constrained by mixed integer linear constraints.
This condition holds for relevant classes of robotic systems,
including quadrotors and car-like robots. However, control
input constraints are typically non-convex in the flat output.
Common approaches to satisfy control constraints are to
plan a sufficiently smooth trajectory or slow down along a
trajectory [31].

Fig. 3. Illustration of the environment. The goals are labeled D1, D2,
D3, and D4. Dark regions are obstacles. A representative trajectory for the
quadrotor is shown with the five concatenated CSTREACH problems, i.e.,
([[S]], [[D4 ∧ S]],20), ([[S]], [[D2 ∧ S]],20), ([[S]], [[D3 ∧ S]],20),
([[S]], [[D1 ∧ S]],20), and ([[S]], [[S]],20) in varied colors and shapes.

C. Computing sets of feasible initial states

Our framework can be extended to compute a set of initial
states from which there exists a satisfying control input.
This is possible (when all labels are unions of polytopes) by
performing a projection on a lifted polytope. The key insight
is that a satisfying system trajectory has a corresponding
sequence of polytopes. One can construct a lifted polytope
in the initial state x0 and control input u, and then project on
x0 to compute a set of feasible initial conditions. We defer
to Section V-B in [8] for details on this construction.

VIII. EXAMPLES

We demonstrate our techniques on a variety of motion
planning problems. The first example is a chain of integra-
tors parameterized by dimension. Our second example is a
quadrotor model that was previously considered in [32]. Our
final example is a nonlinear car-like vehicle with drift. All
computations were done on a laptop with a 2.4 GHz dual-
core processor and 4 GB of memory using CPLEX [33]
through YALMIP [34].

The environment and task are motivated by a deliv-
ery scenario. All properties should be understood to be
with respect to regions in the plane (see Figure 3).
Let D1, D2, D3, and D4 be regions where supplies
must be delivered. The robot must stay in the safe re-
gion S (in white). Formally, we consider task spec-
ifications of the form specF(n) = ⋀ni=1◇Di ∧ ◻S and
specGF(n) = ⋀ni=1 ◻◇Di ∧ ◻S for single and repeated de-
liveries, respectively.

In the remainder of this section, we consider this temporal
logic motion planning problem for different system models.
All continuous-time models are discretized using a first-order
hold and time-step of 0.5 seconds. We use a fixed horizon
N = 20 for each constrained reachability problem. These
CSTREACH problems are concatenated between two to six



Fig. 4. Solver time (mean ± standard error) to compute a control input
for various system models for specF(n).

times for an abstract path, resulting in between 40 to 120
time steps (see Figure 3). At each time step, approximately
8 binary variables are used to represent the current label.
A computation limit of 60 seconds is enforced for checking
reachability of each abstract path, and up to three abstract
paths are checked for each trial. Finally, all results are
averaged over 20 randomly generated environments.

We use the coarsest possible abstraction of the dynamical
system, a single abstract state as described in Section V-B.
This abstraction is not proposition-preserving and effectively
means that we directly use the Büchi automaton to guide the
constrained reachability problems that we solve.

A. Chain of integrators

The first system is a chain of orthogonal integrators in
the x and y directions. The k-th derivative of the x and
y positions are controlled, i.e., x(k) = ux and y(k) = uy ,
subject to the constraints ∣ux∣ ≤ 0.5 and ∣uy ∣ ≤ 0.5. The state
constraints are ∣x(i)∣ ≤ 1 and ∣y(i)∣ ≤ 1 for i = 1, . . . , k − 1.
Results are given in Figures 4, 5, and 6 under “chain-
2,” “chain-6,” and “chain-10,” where “chain-k” is a 2k-
dimensional system where the k-th derivative in both the
x and y positions is controlled.

B. Quadrotor

We now consider the quadrotor model used in [32] for
point-to-point motion planning, to which we refer the reader
for a complete description of the model. The state x =
(p, v, r,w) is 10-dimensional, consisting of position p ∈ R3,
velocity v ∈ R3, orientation r ∈ R2, and angular velocity
w ∈ R2. This model is the linearization of a nonlinear model
about hover with the yaw constrained to be zero. The control
input u ∈ R3 is the total, roll, and pitch thrust. Results are
given in Figures 4, 5, and 6 under “quadrotor,” and a sample
trajectory is shown in Figure 3.

Fig. 5. Total time (mean ± standard error) to compute a control input for
various system models for specF(n).

Fig. 6. Solver time (mean ± standard error) to compute a control input
for various system models for specGF(n). Total time is not shown.

C. Nonlinear car

Consider a nonlinear car-like vehicle with state x =
(px, py, θ) and dynamics ẋ = (v cos(θ), v sin(θ), u). The
variables px, py are position (m) and θ is orientation (rad).
The vehicle’s speed v is fixed at 0.5 (m/s) and its control
input is constrained as ∣u∣ ≤ 2.5. We form a hybrid MLD
model by linearizing the system about different orientations
θ̂i for i = 1,2,3. The dynamics are governed by the closest
linearization to the current θ. Results are given in Figures 4,
5, and 6 under “car.”

D. Discussion

We are able to generate satisfying trajectories for 20-
dimensional constrained linear systems, which is not pos-
sible with finite abstraction approaches such as [4] or [8]
or the specification-guided approach of [22]. For the 10-
dimensional quadrotor model, feasible solutions are returned



in a matter of seconds. The nonlinear car model required
additional binary variables to describe the hybrid modes,
which led to larger mixed-integer optimization problems
and thus its poor relative performance. Our results appear
particularly promising for situations where the environment
is dynamically changing and a finite abstraction must be
repeatedly computed.

Typically few abstract paths needed to be checked to
determine a feasible solution. This is because the ordering
between visits to the different labeled regions did not usually
affect the problem’s feasibility. The intuition is that the robot
can (almost) move to any state in the safe region S from any
other state.

Finally, the total time (e.g., Figure 4) is typically an order
of magnitude more than the solver time (e.g., Figure 5).
The main component of the total time is the translation of
the YALMIP model to the input for the CPLEX optimizer,
which could be avoided by interfacing directly with CPLEX.
Thus, we believe that the solver time is more indicative of
performance than total time.

IX. CONCLUSIONS

We created controllers for discrete-time nonlinear systems
with temporal logic specifications. Our approach uses a
coarse approximation of the system along with the logical
specification to guide the computation of constrained reach-
ability problems as needed for the task. Notably, we do not
require any discretization of the original system and our
method lends itself to a parallel implementation.

There are multiple directions for future work, including
investigating tradeoffs between checking an entire sequence
of constrained reachability problems vs. only a subsequence,
choosing the appropriate abstraction level given a system and
a specification, and applying PDE-based methods [12] for the
computation of the constrained reachability problems.
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