Optimal Control of Nonlinear Systems with Temporal Logic Specifications

Eric M. Wolff and Richard M. Murray California Institute of Technology

ISRR
16 December 2013

Autonomous Systems Doing Complex Tasks

US Navy

- How to specify complex tasks?
- How to handle high-dimensional, nonlinear dynamics?
- How to compute time or fuel optimal controllers?

Temporal Logic

- Propositional logic: \land (and), \lor (or), \Longrightarrow (implies), \neg (not)
- Temporal operators: \mathcal{U} (until), \bigcirc (next), \square (always), \diamondsuit (eventually)

Autonomous driving

Bomb disposal

Generalizes classical motion planning

Problem Statement

Given

- nonlinear system
- temporal logic spec φ
- cost function J
- $\mathbf{x}(\mathbf{x}_0, \mathbf{u})$ is the trajectory

- $L(\mathbf{x}(\mathbf{x}_0,\mathbf{u}))$ is sequence of labels
- Goal

$$\min_{\mathbf{u}} J(\mathbf{x}(x_0,\mathbf{u}))$$

s.t.
$$L(\mathbf{x}(x_0,\mathbf{u})) \models \varphi$$

(minimize cost)

(satisfy spec/task)

Solution Overview

- 1. Parameterize trajectory as a lasso
- 2. Encode **temporal logic** with mixed- integer

linear constraints on lasso

- 3. Add **dynamic** constraints
- 4. Solve resulting MILP

Computational Results

- Order of magnitude improvement over abstractions
- Solutions for high-dimensional systems in seconds

Task: Repeatedly visit 3 regions and avoid obstacles

Thank you!

Contact: Eric M. Wolff

– Email: <u>ewolff@caltech.edu</u>

– Web: <u>www.cds.caltech.edu/~ewolff/</u>

• Funding: NDSEG fellowship, Boeing, AFOSR

