Optimal Control of Non-deterministic
Systems for a Fragment of Temporal Logic

Eric M. Wolff!
Ufuk Topcu? and Richard M. Murray?
1Caltech and 2UPenn

SYNT

July 13, 2013 5’"‘




Autonomous Systems in the Field

7/13/13 Wolff



Planning in a Dynamic Environment

* Dynamic obstacles
e Safe navigation and repetitive tasks




Our Contributions

* |Introduce expressive and efficient fragment
of linear temporal logic

— Optimal control
— Non-deterministic and stochastic systems
— Simple and extensible framework



Outline

Preliminaries

Feasible control policies
Optimal control policies
Examples

Future directions



Outline

* Preliminaries



Hierarchical Control Architecture

{A} {B}
A .
C G
Dynamical system Discrete abstraction? Non-deterministic

transition system

 We focus on the discrete planning layer
* Discrete plan is executed at continuous level

1. AlurHLPOO, BeltaHO06, HabetsCS06, KaramanF09, KloetzerB08, WongpiromsarnTM12, and more
7/13/13 Wolff 7



Discrete Abstractions

o dx/dt = f(x,u)
— X = system state
— u = control input

1
\\
- T s
— ===

Figure from BeltalP04

e Discrete states = sets of continuous states

7/13/13 Wolff



Non-deterministic Transition Systems

* A non-deterministic transition system (NTS) is a
tuple T=(S, A, R, sy, AP, L) where
— states S,
— actions A,
— transition function R: S x A — 23,
— initial state s,




Non-deterministic Transition Systems

* A non-deterministic transition system (NTS) is a
tuple T=(S, A, R, sy, AP, L) where
— states S,
— actions A,
— transition function R: S x A — 23,
— initial state s,
— atomic propositions AP,
— labeling function L : S — 24", and
— cost functionc:SxAxS — R.

{A} {B} {B,C}




Control Policies

* Finite-memory control policy: 1: SxM 2> Ax M




Control Policies

* Finite-memory control policy: 1: SxM 2> Ax M

 Two-player game:
— 1) System picks action using control policy
— 2) Environment picks next state

{A} {B} {B,C}




Control Policies

* Finite-memory control policy: 1: SxM 2> Ax M
 Two-player game:
— 1) System picks action using control policy

— 2) Environment picks next state

* TH(s):setof runs from state s under policy

{A} {B} {B,C}




Specification Language

e We consider formulas of the form:

SS
P = Psafe N Presp N Pper N Prask N Presp?
where

Psafe = le 3 Safety



Specification Language

e We consider formulas of the form:

Ss
P = Psafe N Presp N Pper N Prask N Pregpy
where

Psafe = lea Safety

Presp = /\ D(wlj — ©¢2,j)7 Response
jGIg



Specification Language

e We consider formulas of the form:

SS
P = Psafe N Presp N Pper N Prask N Presp?

where
Psafe -= lea Safety
Presp = /\ D(wlj — ©¢2,j)7 Response

Pper = < O Y3, Persistence (stability)



Specification Language

e We consider formulas of the form:

Ss
P = Psafe N Presp N Pper N Prask N Pregpy

where

Psafe

Presp -

Pper -
Ptask -

lea
N\ O(t2,; = O¢2;),

Safety

Response

Persistence (stability)

Repeated tasks



Specification Language

e We consider formulas of the form:

Ss
P = Psafe N Presp N Pper N Prask N Pregpy

where
Psafe = lea
Presp = /\ D(wlj — O¢2,j)a
qgels
Pper = & 0O 1037

Safety

Response

Persistence (stability)

Repeated tasks

= /\ OO (1&5’3- — ©¢5’j). Steady-state response

Jj€ls



Related Work

GR(1) [PitermanPS06, BloemJPPS12]
OOpA---AOOPm) = (OOCan A0 aw)

GRabin(1) [Ehlers11]
Related logics: AlurTo4, MalerPS95

How this work differs: * GR1 system + persistence

— More system guarantees than GR(1)
— No environment liveness assumptions



Cost Functions

* Average cost-per-task-cycle

Jrc(o, u(o)) = limsup Xi=0 (01, 14(0t), O1+1)

n=eo Z:io [TC(t)




Cost Functions

* Average cost-per-task-cycle

Jrc(o, u(o)) = limsup Xi=0 (01, 14(0t), O1+1)

n— oo Z?:O ITC(t)

* Not discussed today
— Minimax (bottleneck) cost
— Average cost




Problem Statement

* Given:
— Non-deterministic transition system T
— Temporal logic specification ¢ of the form

sS
P = Psafe N Presp N Pper N Prask N Pregp

— Cost function J

* Problem: Create control policy p such that that
the set of runs TH(s,) satisfies ¢ and minimizes J



Value (Rank) Function and Reachability

* V&(s): minimum cost to reach set B from state s under
all resolutions of the non-determinism

V5 +(s)= min max Vs +(t)+c(s,a,t
B’T( ) acA(s) teR(s,a) B’T( ) ( )



Value (Rank) Function and Reachability

* V&(s): minimum cost to reach set B from state s under
all resolutions of the non-determinism

V5 +(s)= min max Vs +(t)+c(s,a,t
B’T( ) acA(s) teR(s,a) B’T( ) ( )

 Example
— V¢,(1) = o0
— V5,(2) =
— VS(3)=1
— VS,(4)=0
— CPre(4) ={3, 4} (attractor)




Outline

* Feasible control policies



Removing Unsafe Behaviors

1. Remove unsafe states from T (@ ¢, @)

2. Remove unsafe transitions from T (cpresp, cpssresp)




Removing Unsafe Behaviors

1. Remove unsafe states from T (@ ¢, @)

2. Remove unsafe transitions from T (cpresp, cpssresp)

(psafe = [] B




Repeated Tasks

1. Remove unsafe states from T (@ ¢, @pe,)
2. Remove unsafe transitions from T (@, O csp)

3. Compute task cycle (generalized Biichi) on T, ¢

F1

7/13/13



Generalized Buchi Game

Qe = [1<> F1 & []J<> F2

F1

F2

Iterate until sets stop changing.

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Praq = [1<> F1 & []J<> F2

F2;

*
*
*

CPre(F1) = all states that

can reach F1 (attractor)
Cannot reach F1

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Qe = [1<> F1 & []J<> F2

F1

F2’

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Praq = [1<> F1 & []J<> F2

Cannot reach F2’

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Qe = [1<> F1 & []J<> F2

F1’

F2’

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Praq = [1<> F1 & []J<> F2

----------------
------
.....

L]
",
L]
']
......
-------

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Praq = [1<> F1 & []J<> F2

----------------
------
.....

L]
",
L]
']
......
-------

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Qe = [1<> F1 & []J<> F2

F1’

F2’

DONE!

Return the F; task sets and their
corresponding value functions.

ChatterjeeHP06, McNaughton93



Feasible Synthesis Summary

 What have we computed?
— Largest possible task sets F,
— All states from which spec is feasible

— Finite-memory control policies (from value fcn)
* Time complexity:

— S = # states, R = # transitions, ¢ = # specs

Language DTS NTS

Our method| O(|¢|(|S|+|R])) O(le|Fmin(|S| +|R]))
GR(1) O(l¢lIS|IR)) O(l¢||S||R])

LTL 0D s+ R)) | 022" (S|+R])




Do Standard Methods Work?
| Timle to Cpmpyte ngchi A]uton)atonl

Presp -= /\ D(wlj — ©¢27j)
jGIg

=

o
[N]

Al |

o
(S

CPU time (sec)

=
o
N

=
o
w

2 3 4 5 6 7 8 9
Number of specifications

10

: 16 min!



Comparison to GR(1)

Grid size (n)

60 141516 17 18 20 21 22 23 24
50} - |
jtlv + grilc - Our work
40+ JAN
= o
Q
N
< 301 O
€
= ]
20}
PAY O
— ]
10+ \I/:] [0  Fragmentin (1) |-
A O Vv grlc
/_\El:]g A jtlv
% 50 100 150 200 250 300

Number of states (thousands)

7/13/13

Wolff

39



An Example Run

-
o

2

y (unit)

=

4 5 f 7 8 9 10
X (unit)

* Task: Repeatedly visit locations P and D
* Blue = controlled robot (system)

o
p—
N
w

* Red = non-deterministic obstacle (environment) «



Outline

* Optimal control policies



Average Cost-Per-Task-Cycle

* Average cost-per-task-cycle of run o is

/ : Z?:o C(Ut,M(Ut)yUtH)
Jro(o, (o)) = imsup —

 The average cost-per-task-cycle cost function
1S

Jrc(TH(s)) := jmax Jre (o, (o)) A




Optimality is Hard

* Theorem: Computing a control policy that is
minimizes the average cost-per-task-cycle is
NP-hard, even in the deterministic case.

* Proof: By constructing a generalized traveling

salesman problem where tasks are nodes in
the TSP graph.

Cost function: Average Minimax Task Cycle
Complexity: POLY POLY in task graph EXP in task graph

7/13/13 Wolff 43



Task Graph

* Create new graph that encodes shortest paths
between tasks




Task Graph

* Create new graph that encodes shortest paths
between tasks

e Number of states
— Deterministic: | F|

— Non-deterministic: 2 ey, AU

[ {A}

- - -
7




Fixed Ordering Assumption

* Assumption: Optimize over all fixed orderings
of tasks



Fixed Ordering Assumption

* Assumption: Optimize over all fixed orderings
of tasks

* Solve generalized TSP on task graph
— Use commercial solvers
— Approximate solutions

e Solution gives optimal task ordering and
subsets



Outline

 Examples



Example: Pickup and Delivery

* System:

— Robot and obstacle
move to adjacent
regions each step

* Specs:
— Avoid collisions

— Repeatedly visit
Pickup and Dropoff
locations

D2

D3

D1

Optimal Control Policy Time

70 . : :
— n=10 (1.8k states)
S n=14 (14k states) P
----- n=18 (50k states) LT
50} ‘ |
O 40 ‘
2 =
w .
£ 30}
(o i
20k
o - e
01 2 3 4 5 6 7 8

Dropoff locations



Outline

e Future directions



Future Directions

e Optimal control of highly
dynamic systems

— Automata-guided
reacha b|||ty [IROS13,accepted]

— Encoding LTL as mixed-
Integer constraints [IsRR13, sub.]

* Robust control for Integrator (20 dim)
i Solution in 6 sec.
uncertain systems ofution In 6 sec

7/13/13 Wolff 51



Future Directions

Quadrotor Aircraft

7/13/13 Wolff 52



Conclusions

* Main results
— Optimal control with LTL fragment
— Non-deterministic and stochastic systems

— Simple and extensible framework

. () )
w
* Future work Dynamics Abstraction  NTS

— Receding horizon control
— Removing fixed-ordering assumption



Thank you!

e Contact: Eric M. Wolff

— Email: ewolff@caltech.edu
— Web: www.cds.caltech.edu/~ewolff/

@_EHEI/VE@

&)
* Funding: NDSEG fellowship, Boeing, AFOSR §/AFDSR

7/13/13 Wolff 54



References

R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete abstractions of hybrid systems,”
Proc. IEEE, 2000.

R. Alur and S. LaTorre,“Deterministic generators and games for LTL fragments,” ACM Trans.
Comput. Logic, vol. 5, no. 1, pp. 1-25, 2004.

C.Belta and L.C.G.J.M.Habets,“Control of a class of nonlinear systems on rectangles,” IEEE Trans. on
Automatic Control, vol. 51, pp. 1749-1759, 2006,

R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of Reactive(1) designs,”
Journal of Computer and System Sciences, vol. 78, pp. 911-938, 2012.

R. Ehlers, “Generalized Rabin(1) synthesis with applications to robust system synthesis,” in NASA
Formal Methods, 2011

L. Habets, P. J. Collins, and J. H. van Schuppen, “Reachability and control synthesis for piecewise-
affine hybrid systems on simplices,” IEEE Trans. on Automatic Control, vol. 51, pp. 938-948, 2006.

S. Karaman and E. Frazzoli, “Sampling-based motion planning with deterministic p-calculus
specifications,” in Proc. of IEEE Conf. on Decision and Control, 2009.

M. Kloetzer and C. Belta, “A fully automated framework for control of linear systems from temporal
logic specifications,” IEEE Trans. on Automatic Control, vol. 53, no. 1, pp. 287-297, 2008.

O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete controllers for timed systems,” in
STACS 95.

T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon temporal logic planning,” IEEE
Trans. on Automatic Control, 2012



