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Planning in a Dynamic Environment

* Dynamic obstacles
e Safe navigation and repetitive tasks




Our Contributions

* |Introduce expressive and efficient fragment
of linear temporal logic

— Optimal control
— Non-deterministic and stochastic systems
— Simple and extensible framework
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* Preliminaries



Hierarchical Control Architecture

{A} {B}
A .
C G
Dynamical system Discrete abstraction? Non-deterministic

transition system

 We focus on the discrete planning layer
* Discrete plan is executed at continuous level

1. AlurHLPOO, BeltaHO06, HabetsCS06, KaramanF09, KloetzerB08, WongpiromsarnTM12, and more
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Discrete Abstractions

o dx/dt = f(x,u)
— X = system state
— u = control input

1
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— ===

Figure from BeltalP04

e Discrete states = sets of continuous states

7/13/13 Wolff



Non-deterministic Transition Systems

* A non-deterministic transition system (NTS) is a
tuple T=(S, A, R, sy, AP, L) where
— states S,
— actions A,
— transition function R: S x A — 23,
— initial state s,




Non-deterministic Transition Systems

* A non-deterministic transition system (NTS) is a
tuple T=(S, A, R, sy, AP, L) where
— states S,
— actions A,
— transition function R: S x A — 23,
— initial state s,
— atomic propositions AP,
— labeling function L : S — 24", and
— cost functionc:SxAxS — R.
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Control Policies

* Finite-memory control policy: 1: SxM 2> Ax M




Control Policies

* Finite-memory control policy: 1: SxM 2> Ax M

 Two-player game:
— 1) System picks action using control policy
— 2) Environment picks next state
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Control Policies

* Finite-memory control policy: 1: SxM 2> Ax M
 Two-player game:
— 1) System picks action using control policy

— 2) Environment picks next state

* TH(s):setof runs from state s under policy

{A} {B} {B,C}




Specification Language

e We consider formulas of the form:

SS
P = Psafe N Presp N Pper N Prask N Presp?
where

Psafe = le 3 Safety



Specification Language

e We consider formulas of the form:

Ss
P = Psafe N Presp N Pper N Prask N Pregpy
where

Psafe = lea Safety

Presp = /\ D(wlj — ©¢2,j)7 Response
jGIg



Specification Language

e We consider formulas of the form:

SS
P = Psafe N Presp N Pper N Prask N Presp?

where
Psafe -= lea Safety
Presp = /\ D(wlj — ©¢2,j)7 Response

Pper = < O Y3, Persistence (stability)



Specification Language

e We consider formulas of the form:

Ss
P = Psafe N Presp N Pper N Prask N Pregpy

where

Psafe

Presp -

Pper -
Ptask -

lea
N\ O(t2,; = O¢2;),

Safety

Response

Persistence (stability)

Repeated tasks



Specification Language

e We consider formulas of the form:

Ss
P = Psafe N Presp N Pper N Prask N Pregpy

where
Psafe = lea
Presp = /\ D(wlj — O¢2,j)a
qgels
Pper = & 0O 1037

Safety

Response

Persistence (stability)

Repeated tasks

= /\ OO (1&5’3- — ©¢5’j). Steady-state response

Jj€ls



Related Work

GR(1) [PitermanPS06, BloemJPPS12]
OOpA---AOOPm) = (OOCan A0 aw)

GRabin(1) [Ehlers11]
Related logics: AlurTo4, MalerPS95

How this work differs: * GR1 system + persistence

— More system guarantees than GR(1)
— No environment liveness assumptions



Cost Functions

* Average cost-per-task-cycle

Jrc(o, u(o)) = limsup Xi=0 (01, 14(0t), O1+1)

n=eo Z:io [TC(t)




Cost Functions

* Average cost-per-task-cycle

Jrc(o, u(o)) = limsup Xi=0 (01, 14(0t), O1+1)

n— oo Z?:O ITC(t)

* Not discussed today
— Minimax (bottleneck) cost
— Average cost




Problem Statement

* Given:
— Non-deterministic transition system T
— Temporal logic specification ¢ of the form

sS
P = Psafe N Presp N Pper N Prask N Pregp

— Cost function J

* Problem: Create control policy p such that that
the set of runs TH(s,) satisfies ¢ and minimizes J



Value (Rank) Function and Reachability

* V&(s): minimum cost to reach set B from state s under
all resolutions of the non-determinism

V5 +(s)= min max Vs +(t)+c(s,a,t
B’T( ) acA(s) teR(s,a) B’T( ) ( )



Value (Rank) Function and Reachability

* V&(s): minimum cost to reach set B from state s under
all resolutions of the non-determinism

V5 +(s)= min max Vs +(t)+c(s,a,t
B’T( ) acA(s) teR(s,a) B’T( ) ( )

 Example
— V¢,(1) = o0
— V5,(2) =
— VS(3)=1
— VS,(4)=0
— CPre(4) ={3, 4} (attractor)
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* Feasible control policies



Removing Unsafe Behaviors

1. Remove unsafe states from T (@ ¢, @)

2. Remove unsafe transitions from T (cpresp, cpssresp)




Removing Unsafe Behaviors

1. Remove unsafe states from T (@ ¢, @)

2. Remove unsafe transitions from T (cpresp, cpssresp)

(psafe = [] B




Repeated Tasks

1. Remove unsafe states from T (@ ¢, @pe,)
2. Remove unsafe transitions from T (@, O csp)

3. Compute task cycle (generalized Biichi) on T, ¢

F1

7/13/13



Generalized Buchi Game

Qe = [1<> F1 & []J<> F2

F1

F2

Iterate until sets stop changing.

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Praq = [1<> F1 & []J<> F2

F2;

*
*
*

CPre(F1) = all states that

can reach F1 (attractor)
Cannot reach F1

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Qe = [1<> F1 & []J<> F2

F1

F2’

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Praq = [1<> F1 & []J<> F2

Cannot reach F2’

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Qe = [1<> F1 & []J<> F2

F1’

F2’

ChatterjeeHP06, McNaughton93



Generalized Buchi Game

Praq = [1<> F1 & []J<> F2
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Generalized Buchi Game

Praq = [1<> F1 & []J<> F2

----------------
------
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-------
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Generalized Buchi Game

Qe = [1<> F1 & []J<> F2

F1’

F2’

DONE!

Return the F; task sets and their
corresponding value functions.

ChatterjeeHP06, McNaughton93



Feasible Synthesis Summary

 What have we computed?
— Largest possible task sets F,
— All states from which spec is feasible

— Finite-memory control policies (from value fcn)
* Time complexity:

— S = # states, R = # transitions, ¢ = # specs

Language DTS NTS

Our method| O(|¢|(|S|+|R])) O(le|Fmin(|S| +|R]))
GR(1) O(l¢lIS|IR)) O(l¢||S||R])

LTL 0D s+ R)) | 022" (S|+R])




Do Standard Methods Work?
| Timle to Cpmpyte ngchi A]uton)atonl

Presp -= /\ D(wlj — ©¢27j)
jGIg
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: 16 min!



Comparison to GR(1)

Grid size (n)
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An Example Run

-
o

2

y (unit)

=

4 5 f 7 8 9 10
X (unit)

* Task: Repeatedly visit locations P and D
* Blue = controlled robot (system)

o
p—
N
w

* Red = non-deterministic obstacle (environment) «
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* Optimal control policies



Average Cost-Per-Task-Cycle

* Average cost-per-task-cycle of run o is

/ : Z?:o C(Ut,M(Ut)yUtH)
Jro(o, (o)) = imsup —

 The average cost-per-task-cycle cost function
1S

Jrc(TH(s)) := jmax Jre (o, (o)) A




Optimality is Hard

* Theorem: Computing a control policy that is
minimizes the average cost-per-task-cycle is
NP-hard, even in the deterministic case.

* Proof: By constructing a generalized traveling

salesman problem where tasks are nodes in
the TSP graph.

Cost function: Average Minimax Task Cycle
Complexity: POLY POLY in task graph EXP in task graph

7/13/13 Wolff 43



Task Graph

* Create new graph that encodes shortest paths
between tasks




Task Graph

* Create new graph that encodes shortest paths
between tasks

e Number of states
— Deterministic: | F|

— Non-deterministic: 2 ey, AU

[ {A}

- - -
7




Fixed Ordering Assumption

* Assumption: Optimize over all fixed orderings
of tasks



Fixed Ordering Assumption

* Assumption: Optimize over all fixed orderings
of tasks

* Solve generalized TSP on task graph
— Use commercial solvers
— Approximate solutions

e Solution gives optimal task ordering and
subsets
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 Examples



Example: Pickup and Delivery

* System:

— Robot and obstacle
move to adjacent
regions each step

* Specs:
— Avoid collisions

— Repeatedly visit
Pickup and Dropoff
locations

D2

D3

D1

Optimal Control Policy Time

70 . : :
— n=10 (1.8k states)
S n=14 (14k states) P
----- n=18 (50k states) LT
50} ‘ |
O 40 ‘
2 =
w .
£ 30}
(o i
20k
o - e
01 2 3 4 5 6 7 8

Dropoff locations
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e Future directions



Future Directions

e Optimal control of highly
dynamic systems

— Automata-guided
reacha b|||ty [IROS13,accepted]

— Encoding LTL as mixed-
Integer constraints [IsRR13, sub.]

* Robust control for Integrator (20 dim)
i Solution in 6 sec.
uncertain systems ofution In 6 sec

7/13/13 Wolff 51



Future Directions

Quadrotor Aircraft

7/13/13 Wolff 52



Conclusions

* Main results
— Optimal control with LTL fragment
— Non-deterministic and stochastic systems

— Simple and extensible framework

. () )
w
* Future work Dynamics Abstraction  NTS

— Receding horizon control
— Removing fixed-ordering assumption



Thank you!

e Contact: Eric M. Wolff

— Email: ewolff@caltech.edu
— Web: www.cds.caltech.edu/~ewolff/

@_EHEI/VE@

&)
* Funding: NDSEG fellowship, Boeing, AFOSR §/AFDSR
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