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Autonomous Systems in the Field
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Planning in a Dynamic Environment

•  Dynamic obstacles
•  Safe naviga#on and repe##ve tasks

37/13/13 Wolff



Our Contribu#ons

•  Introduce expressive and efficient fragment
of linear temporal logic
– Op#mal control
– Non-‐determinis#c and stochas#c systems
– Simple and extensible framework
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Outline
•  Preliminaries
•  Feasible control policies
•  Op#mal control policies
•  Examples
•  Future direc#ons
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Outline
•  Preliminaries
•  Feasible control policies
•  Op#mal control policies
•  Examples
•  Future direc#ons
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Hierarchical Control Architecture

•  We focus on the discrete planning layer
•  Discrete plan is executed at con#nuous level

B C

A

1. AlurHLP00, BeltaH06, HabetsCS06, KaramanF09, KloetzerB08, WongpiromsarnTM12, and more

Dynamical system Discrete abstrac:on1 Non-‐determinis:c
transi:on system
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Discrete Abstrac#ons

7/13/13 Wolff 8

Figure from BeltaIP04

•  dx/dt = f(x,u)
– x = system state
– u = control input

•  Discrete states = sets of con#nuous states



Non-‐determinis#c Transi#on Systems
•  A non-‐determinis:c transi:on system (NTS) is a
tuple T = (S, A, R, s0, AP, L) where
–  states S,
–  ac:ons A,
–  transi:on func#on R: S x A→ 2S,
–  ini#al state s0,
 
 
 

97/13/13



Non-‐determinis#c Transi#on Systems
•  A non-‐determinis:c transi:on system (NTS) is a
tuple T = (S, A, R, s0, AP, L) where
–  states S,
–  ac:ons A,
–  transi:on func#on R: S x A→ 2S,
–  ini#al state s0,
–  atomic proposi#ons AP,
–  labeling func#on L : S→ 2AP, and
–  cost func#on c : S x A x S→ ℜ.

2.6 1.1

0 0
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Control Policies
•  Finite-‐memory control policy: μ: S x M→ A x M
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Control Policies
•  Finite-‐memory control policy: μ: S x M→ A x M

•  Two-‐player game:
–  1) System picks ac#on using control policy
–  2) Environment picks next state
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Control Policies
•  Finite-‐memory control policy: μ: S x M→ A x M
 
•  Two-‐player game:

–  1) System picks ac#on using control policy
–  2) Environment picks next state

•  Tμ (s) : set of runs from state s under policy μ
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Specifica#on Language

•  We consider formulas of the form:

where

s i

alw y tr [2 ]

ϕ = ϕsafe ∧ ϕresp ∧ ϕper ∧ ϕtask ∧ ϕss

resp
,

is rue infinitely of e , and �� ϕ me

t c e o

ϕ a e sk (

ϕsafe ∶= �ψ1, Safety
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Specifica#on Language

•  We consider formulas of the form:
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Specifica#on Language

•  We consider formulas of the form:

where

s i

alw y tr [2 ]

ϕ = ϕsafe ∧ ϕresp ∧ ϕper ∧ ϕtask ∧ ϕss

resp
,

is rue infinitely of e , and �� ϕ me

t c e o

ϕ a e sk (

ϕsafe ∶= �ψ1,

ϕresp ∶= �
j∈I2
�(ψ2,j �⇒ �φ2,j),

ϕper ∶=�� ψ3,

ϕtask ∶= �
j∈I4
��ψ4,j ,

ϕss

resp
∶= �

j∈I5
�� (ψ5,j �⇒ �φ5,j).

Safety

Response

Persistence (stability)

Repeated tasks

Steady-‐state response
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Related Work

•  GR(1) [PitermanPS06, BloemJPPS12]

•  GRabin(1) [Ehlers11]
•  Related logics: AlurT04, MalerPS95

•  How this work differs:
– More system guarantees than GR(1)
– No environment liveness assump#ons

m s , G
i appro ches fo var ous lt

t e for

(GF p1 ∧ · · · ∧GF pm) → (GF q1 ∧ · · · ∧GF qn)

er we assume hat the spec

y ynthesis problem who e specific tion is a gr(

hi implements he spec ficat on

p

ec ficat on F t, we s ow th t we an incl

th pt o and the g ar s cond,
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Cost	  Func#ons	  

•  Average	  cost-‐per-‐task-‐cycle	  

•  Minimax	  (boileneck)	  cost	  
•  Average	  cost	  

B	  

A	  

D	  

C	  

Algorithm 2 Overview: Feasible synthesis for NTS
Input: Non-deterministic system T and formula ϕ
Output: Control policy µ

1: Compute Tresp on T
2: Tsafe ← Tresp�S−FPre∞(S−[[ψ1]])
3: Tper ← Tsafe�S−FPre∞(S−[[ψ3]])
4: Compute T ss

resp on Tper
5: Ψ ∶= {[[ψ4,j]] for all j ∈ I4}
6: SA, F ∶= {F1, . . . , F�I4�}← BUCHI(T ss

resp,Ψ)
7: W ∶= CPre∞Tsafe

(SA)
8: if s0 ∉W then

9: return “no control policy exists”
10: end if

11: µSA ← control policy induced by V c
SA,Tsafe

12: µj ← control policy induced by V c
Fj ,Tsafe

for all j ∈ I4
13: return Control policies µSA and µj for all j ∈ I4

Fig. 2. A non-deterministic transition system and its task graph.

Algorithm 1 (see Algorithm 2). Note that Tinf is the largest
subgraph of T where all constraints from ϕsafe, ϕresp, ϕper,
and ϕss

resp hold. Each Fj is the largest set of states for the jth
task that are part of a feasible control policy. The problem
is now to compute a feasible (winning) control policy that
also minimizes the relevant cost function.

Since only the recurrent tasks in ϕtask on Tinf will matter
for optimization, we construct a new graph that encodes the
cost of moving between all tasks. We construct the task graph
G′ = (V ′,E′) which encodes the cost of optimal control
policies between all tasks in ϕtask (see Figure 2). Let V ′
be partitioned as V ′ = �j∈I4 V ′j , where V ′i ∩ V ′j = � for all
i ≠ j. Let Fj ⊆ S denote the set of states that correspond to
the jth task in ϕtask, as returned from Algorithm 1. Create a
state v ∈ V ′j for each of the 2�Fj � − 1 non-empty subsets of
Fj that are reachable from the initial state. Define the map
τ ∶ V ′ → 2S from each state in V ′ to subsets of states in S.
For each state v ∈ V ′, compute the controlled value function
V c
τ(v),Tinf

on Tinf. For all states u ∈ V ′i and v ∈ V ′j where
i ≠ j, define an edge euv ∈ E′. Assign a cost to edge euv as
cuv ∶=maxs∈τ(u) V c

τ(v),Tinf
(s). The cost cuv is the maximum

worst-case cost of reaching a state t ∈ τ(v) from a state
s ∈ τ(u), when using an optimal control policy.

It is necessary to consider all subsets of states, as the
cost of reaching each subset may differ due to the non-
determinism. For deterministic systems, one can simply
create a state in V ′j for each state in Fj . This is because
the cost of all subsets of Fj can be determined by the costs
to reach the individual states in Fj .

Remark 7. It may not be necessary to create the entire

task graph at once. For example, one can create a task
graph with �I4� states where each state corresponds to the
set Fj . This gives a control policy that leads to an upper
bound on the cost of an optimal policy. Additionally, by
defining edges in the task graph as the minimum worst-case
cost mins∈τ(u) V c

τ(v),Tinf
(s) between tasks, one can compute

a lower bound on the cost of an optimal policy. One can
use the current control policy and improve performance in
an anytime manner by adding more states to the subgraph
corresponding to subsets of each Fj .

Algorithm 3 Overview: Optimal synthesis for NTS
Input: NTS T , formula ϕ, cost function J
Output: Optimal control policy µ∗

1: Compute T ss
resp, SA, and Fj for all j ∈ I4 (see Alg. 2)

2: Compute F ∗j ⊆ Fj for all j ∈ I4 and optimal task order
3: µ∗F ∗ ← control policy from V c

F ∗,Tsafe
where F ∗ = ∪j∈I4F ∗j

4: µ∗j ← control policy from V c
F ∗j ,Tsafe

for all j ∈ I4
5: return µ∗F ∗ , µ∗j for all j ∈ I4 and optimal task order

A. Average cost-per-task-cycle
Recall that for ϕtask = �j∈I4 � � ψ4,j , the propositional

formula ψ4,j is the jth task. A run σ of system T completes
the jth task at time t if and only if σt ∈ [[ψ4,j]]. A task
cycle is a sequence of states that completes each task at least
once, i.e., it intersects [[ψj]] for each j = 1, . . . ,m at least
once. Similarly to [12], we minimize the average cost-per-
task-cycle, or equivalently the maximum cost of a task cycle
in the limit. For a deterministic system, this corresponds to
finding a cycle of minimal cost that completes every task.

We define the cost function over a run σ. Let σ be a
run of T under control policy µ, µ(σ) be the corresponding
control input sequence, and ITC(t) = 1 indicate that the
system completes a task cycle at time t and ITC(t) = 0
otherwise. The average cost per task cycle of run σ is

J ′TC(σ, µ(σ)) ∶= lim sup
n→∞

∑n
t=0 c(σt, µ(σt),σt+1)∑n

t=0 ITC(t) ,

which maps runs and control inputs of T to R ∪ ∞. This
map is well-defined when (i) c(σt, µ(σt),σt+1) is bounded
for all t ≥ 0, and (ii) there exists a t′ ∈ N such that ITC(t) = 1
for infinitely many t ≥ t′. We assume that (i) is true in the
sequel and note that (ii) holds for every run that satisfies a
formula ϕ with at least one task. If there are no tasks in ϕ,
one can add the task ��True so that ITC(t) = 1 at every
time instance (see Section VI-C).

We define the average per-task-cycle cost function

JTC(T µ(s)) ∶= max
σ∈T µ(s)J

′
TC(σ, µ(σ)) (2)

over the set of runs of system T starting from initial state s
under control policy µ. The cost function (2) does not depend
on any finite behavior of the system, intuitively because any
short-term costs are averaged out in the limit.

We next show that Problem 2 with cost function JTC is at
least as hard as the NP-hard generalized traveling salesman
problem [26].

20	  7/13/13	   Wolff	  



Cost	  Func#ons	  

•  Average	  cost-‐per-‐task-‐cycle	  

•  Not	  discussed	  today	  
– Minimax	  (boileneck)	  cost	  
– Average	  cost	  

B	  

A	  

D	  

C	  

Algorithm 2 Overview: Feasible synthesis for NTS
Input: Non-deterministic system T and formula ϕ
Output: Control policy µ

1: Compute Tresp on T
2: Tsafe ← Tresp�S−FPre∞(S−[[ψ1]])
3: Tper ← Tsafe�S−FPre∞(S−[[ψ3]])
4: Compute T ss

resp on Tper
5: Ψ ∶= {[[ψ4,j]] for all j ∈ I4}
6: SA, F ∶= {F1, . . . , F�I4�}← BUCHI(T ss

resp,Ψ)
7: W ∶= CPre∞Tsafe

(SA)
8: if s0 ∉W then

9: return “no control policy exists”
10: end if

11: µSA ← control policy induced by V c
SA,Tsafe

12: µj ← control policy induced by V c
Fj ,Tsafe

for all j ∈ I4
13: return Control policies µSA and µj for all j ∈ I4

Fig. 2. A non-deterministic transition system and its task graph.

Algorithm 1 (see Algorithm 2). Note that Tinf is the largest
subgraph of T where all constraints from ϕsafe, ϕresp, ϕper,
and ϕss

resp hold. Each Fj is the largest set of states for the jth
task that are part of a feasible control policy. The problem
is now to compute a feasible (winning) control policy that
also minimizes the relevant cost function.

Since only the recurrent tasks in ϕtask on Tinf will matter
for optimization, we construct a new graph that encodes the
cost of moving between all tasks. We construct the task graph
G′ = (V ′,E′) which encodes the cost of optimal control
policies between all tasks in ϕtask (see Figure 2). Let V ′
be partitioned as V ′ = �j∈I4 V ′j , where V ′i ∩ V ′j = � for all
i ≠ j. Let Fj ⊆ S denote the set of states that correspond to
the jth task in ϕtask, as returned from Algorithm 1. Create a
state v ∈ V ′j for each of the 2�Fj � − 1 non-empty subsets of
Fj that are reachable from the initial state. Define the map
τ ∶ V ′ → 2S from each state in V ′ to subsets of states in S.
For each state v ∈ V ′, compute the controlled value function
V c
τ(v),Tinf

on Tinf. For all states u ∈ V ′i and v ∈ V ′j where
i ≠ j, define an edge euv ∈ E′. Assign a cost to edge euv as
cuv ∶=maxs∈τ(u) V c

τ(v),Tinf
(s). The cost cuv is the maximum

worst-case cost of reaching a state t ∈ τ(v) from a state
s ∈ τ(u), when using an optimal control policy.

It is necessary to consider all subsets of states, as the
cost of reaching each subset may differ due to the non-
determinism. For deterministic systems, one can simply
create a state in V ′j for each state in Fj . This is because
the cost of all subsets of Fj can be determined by the costs
to reach the individual states in Fj .

Remark 7. It may not be necessary to create the entire

task graph at once. For example, one can create a task
graph with �I4� states where each state corresponds to the
set Fj . This gives a control policy that leads to an upper
bound on the cost of an optimal policy. Additionally, by
defining edges in the task graph as the minimum worst-case
cost mins∈τ(u) V c

τ(v),Tinf
(s) between tasks, one can compute

a lower bound on the cost of an optimal policy. One can
use the current control policy and improve performance in
an anytime manner by adding more states to the subgraph
corresponding to subsets of each Fj .

Algorithm 3 Overview: Optimal synthesis for NTS
Input: NTS T , formula ϕ, cost function J
Output: Optimal control policy µ∗

1: Compute T ss
resp, SA, and Fj for all j ∈ I4 (see Alg. 2)

2: Compute F ∗j ⊆ Fj for all j ∈ I4 and optimal task order
3: µ∗F ∗ ← control policy from V c

F ∗,Tsafe
where F ∗ = ∪j∈I4F ∗j

4: µ∗j ← control policy from V c
F ∗j ,Tsafe

for all j ∈ I4
5: return µ∗F ∗ , µ∗j for all j ∈ I4 and optimal task order

A. Average cost-per-task-cycle
Recall that for ϕtask = �j∈I4 � � ψ4,j , the propositional

formula ψ4,j is the jth task. A run σ of system T completes
the jth task at time t if and only if σt ∈ [[ψ4,j]]. A task
cycle is a sequence of states that completes each task at least
once, i.e., it intersects [[ψj]] for each j = 1, . . . ,m at least
once. Similarly to [12], we minimize the average cost-per-
task-cycle, or equivalently the maximum cost of a task cycle
in the limit. For a deterministic system, this corresponds to
finding a cycle of minimal cost that completes every task.

We define the cost function over a run σ. Let σ be a
run of T under control policy µ, µ(σ) be the corresponding
control input sequence, and ITC(t) = 1 indicate that the
system completes a task cycle at time t and ITC(t) = 0
otherwise. The average cost per task cycle of run σ is

J ′TC(σ, µ(σ)) ∶= lim sup
n→∞

∑n
t=0 c(σt, µ(σt),σt+1)∑n

t=0 ITC(t) ,

which maps runs and control inputs of T to R ∪ ∞. This
map is well-defined when (i) c(σt, µ(σt),σt+1) is bounded
for all t ≥ 0, and (ii) there exists a t′ ∈ N such that ITC(t) = 1
for infinitely many t ≥ t′. We assume that (i) is true in the
sequel and note that (ii) holds for every run that satisfies a
formula ϕ with at least one task. If there are no tasks in ϕ,
one can add the task ��True so that ITC(t) = 1 at every
time instance (see Section VI-C).

We define the average per-task-cycle cost function

JTC(T µ(s)) ∶= max
σ∈T µ(s)J

′
TC(σ, µ(σ)) (2)

over the set of runs of system T starting from initial state s
under control policy µ. The cost function (2) does not depend
on any finite behavior of the system, intuitively because any
short-term costs are averaged out in the limit.

We next show that Problem 2 with cost function JTC is at
least as hard as the NP-hard generalized traveling salesman
problem [26].

21	  7/13/13	   Wolff	  



Problem Statement
•  Given:
– Non-‐determinis#c transi#on system T
– Temporal logic specifica#on ϕ of the form

– Cost func#on J

•  Problem: Create control policy μ such that that
the set of runs Tμ(s0) sa#sfies ϕ and minimizes J

227/13/13 Wolff
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Value (Rank) Func#on and Reachability

•  Vc
B(s): minimum cost to reach set B from state s under

all resolu#ons of the non-‐determinism

 
 
 
 
 
 

f te o p y
r 1 w t un t co o ed es d B 4} en

m cannot guarantee reach n se B from states 1 or 2
v l e funct o sati fies h opt m l y co

V c
B,T (s) = min

a∈A(s) max
t∈R(s,a)V

c
B,T (t) + c(s, a, t)
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Value (Rank) Func#on and Reachability

•  Vc
B(s): minimum cost to reach set B from state s under

all resolu#ons of the non-‐determinism

•  Example
–  Vc

4(1) = ∞
–  Vc

4(2) = ∞
–  Vc

4(3) = 1
–  Vc

4(4) = 0
–  CPre(4) = { 3, 4 } (airactor)

f te o p y
r 1 w t un t co o ed es d B 4} en

m cannot guarantee reach n se B from states 1 or 2
v l e funct o sati fies h opt m l y co

V c
B,T (s) = min

a∈A(s) max
t∈R(s,a)V

c
B,T (t) + c(s, a, t)

i
[23

a g∈
t i
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Outline
•  Preliminaries
•  Feasible control policies
•  Op#mal control policies
•  Examples
•  Future direc#ons
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Removing Unsafe Behaviors

1.  Remove unsafe states from T (ϕsafe, ϕper)
2.  Remove unsafe transi#ons from T (ϕresp, ϕss

resp)

267/13/13 Wolff



Removing Unsafe Behaviors

1.  Remove unsafe states from T (ϕsafe, ϕper)
2.  Remove unsafe transi#ons from T (ϕresp, ϕss

resp)

ϕsafe = [] B

277/13/13 Wolff



Repeated Tasks

1.  Remove unsafe states from T (ϕsafe, ϕper)
2.  Remove unsafe transi#ons from T (ϕresp, ϕss

resp)
3.  Compute task cycle (generalized Büchi) on Tinf

T
Tinf

F1

F2

287/13/13



Generalized Büchi Game

F1

ChaierjeeHP06, McNaughton93

Iterate un#l sets stop changing.

ϕtask = []<> F1 & []<> F2

F2

29Wolff



Generalized	  Büchi	  Game	  

CPre(F1)	  

ChaierjeeHP06,	  McNaughton93	  

ϕtask	  =	  []<>	  F1	  &	  []<>	  F2	  

F1	  

F2	  

Cannot	  reach	  F1	  

30	  Wolff	  

CPre(F1)	  =	  all	  states	  that	  
can	  reach	  F1	  (aSractor)	  



Generalized Büchi Game

ChaierjeeHP06, McNaughton93

ϕtask = []<> F1 & []<> F2

F1

F2’

31Wolff



Generalized	  Büchi	  Game	  

CPre(F2’)	  

ChaierjeeHP06,	  McNaughton93	  

ϕtask	  =	  []<>	  F1	  &	  []<>	  F2	  

F1	  

F2’	  

Cannot	  reach	  F2’	  

32	  Wolff	  



Generalized Büchi Game

ChaierjeeHP06, McNaughton93

ϕtask = []<> F1 & []<> F2

F1’

F2’

33Wolff



Generalized	  Büchi	  Game	  

CPre(F1’)	  

ChaierjeeHP06,	  McNaughton93	  

ϕtask	  =	  []<>	  F1	  &	  []<>	  F2	  

F1’	  

F2’	  
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Generalized	  Büchi	  Game	  

CPre(F2’)	  

ChaierjeeHP06,	  McNaughton93	  

ϕtask	  =	  []<>	  F1	  &	  []<>	  F2	  

F1’	  

F2’	  

35	  Wolff	  



Generalized Büchi Game

ChaierjeeHP06, McNaughton93

DONE!

ϕtask = []<> F1 & []<> F2

F1’

F2’

36Wolff

Return the Fj task sets and their
corresponding value func#ons.



Feasible Synthesis Summary

•  What have we computed?
– Largest possible task sets Fj
– All states from which spec is feasible
– Finite-‐memory control policies (from value fcn)

•  Time complexity:
– S = # states, R = # transi#ons, ϕ = # specsCO L I Y OF FEASI LI

Language DTS NTS
O(�ϕ�(�S� + �R�)) O(�ϕ�Fmin(�S� + �R�))

GR(1) O(�ϕ��S��R�) O(�ϕ��S��R�)
LTL O(2(�ϕ�)(�S� + �R�)) O(22(�ϕ�)(�S� + �R�))
Our method

377/13/13 Wolff



Do Standard Methods Work?

ϕresp ∶= �
j∈I2
�(ψ2,j �⇒ �φ2,j)

Number of specifica:ons

CP
U
:m

e
(s
ec
)

387/13/13

16 min!
Time to Compute Büchi Automaton



Comparison to GR(1)

Our workjtlv + gr1c

397/13/13 Wolff
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An Example Run

•  Task: Repeatedly visit loca#ons P and D
•  Blue = controlled robot (system)
•  Red = non-‐determinis#c obstacle (environment) 40



Outline
•  Preliminaries
•  Feasible control policies
•  Op#mal control policies
•  Examples
•  Future direc#ons
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Average	  Cost-‐Per-‐Task-‐Cycle	  

•  Average	  cost-‐per-‐task-‐cycle	  of	  run	  σ	  is	  

•  The	  average	  cost-‐per-‐task-‐cycle	  cost	  func#on	  
is	  

Algorithm 2 Overview: Feasible synthesis for NTS
Input: Non-deterministic system T and formula ϕ
Output: Control policy µ

1: Compute Tresp on T
2: Tsafe ← Tresp�S−FPre∞(S−[[ψ1]])
3: Tper ← Tsafe�S−FPre∞(S−[[ψ3]])
4: Compute T ss

resp on Tper
5: Ψ ∶= {[[ψ4,j]] for all j ∈ I4}
6: SA, F ∶= {F1, . . . , F�I4�}← BUCHI(T ss

resp,Ψ)
7: W ∶= CPre∞Tsafe

(SA)
8: if s0 ∉W then

9: return “no control policy exists”
10: end if

11: µSA ← control policy induced by V c
SA,Tsafe

12: µj ← control policy induced by V c
Fj ,Tsafe

for all j ∈ I4
13: return Control policies µSA and µj for all j ∈ I4

Fig. 2. A non-deterministic transition system and its task graph.

Algorithm 1 (see Algorithm 2). Note that Tinf is the largest
subgraph of T where all constraints from ϕsafe, ϕresp, ϕper,
and ϕss

resp hold. Each Fj is the largest set of states for the jth
task that are part of a feasible control policy. The problem
is now to compute a feasible (winning) control policy that
also minimizes the relevant cost function.

Since only the recurrent tasks in ϕtask on Tinf will matter
for optimization, we construct a new graph that encodes the
cost of moving between all tasks. We construct the task graph
G′ = (V ′,E′) which encodes the cost of optimal control
policies between all tasks in ϕtask (see Figure 2). Let V ′
be partitioned as V ′ = �j∈I4 V ′j , where V ′i ∩ V ′j = � for all
i ≠ j. Let Fj ⊆ S denote the set of states that correspond to
the jth task in ϕtask, as returned from Algorithm 1. Create a
state v ∈ V ′j for each of the 2�Fj � − 1 non-empty subsets of
Fj that are reachable from the initial state. Define the map
τ ∶ V ′ → 2S from each state in V ′ to subsets of states in S.
For each state v ∈ V ′, compute the controlled value function
V c
τ(v),Tinf

on Tinf. For all states u ∈ V ′i and v ∈ V ′j where
i ≠ j, define an edge euv ∈ E′. Assign a cost to edge euv as
cuv ∶=maxs∈τ(u) V c

τ(v),Tinf
(s). The cost cuv is the maximum

worst-case cost of reaching a state t ∈ τ(v) from a state
s ∈ τ(u), when using an optimal control policy.

It is necessary to consider all subsets of states, as the
cost of reaching each subset may differ due to the non-
determinism. For deterministic systems, one can simply
create a state in V ′j for each state in Fj . This is because
the cost of all subsets of Fj can be determined by the costs
to reach the individual states in Fj .

Remark 7. It may not be necessary to create the entire

task graph at once. For example, one can create a task
graph with �I4� states where each state corresponds to the
set Fj . This gives a control policy that leads to an upper
bound on the cost of an optimal policy. Additionally, by
defining edges in the task graph as the minimum worst-case
cost mins∈τ(u) V c

τ(v),Tinf
(s) between tasks, one can compute

a lower bound on the cost of an optimal policy. One can
use the current control policy and improve performance in
an anytime manner by adding more states to the subgraph
corresponding to subsets of each Fj .

Algorithm 3 Overview: Optimal synthesis for NTS
Input: NTS T , formula ϕ, cost function J
Output: Optimal control policy µ∗

1: Compute T ss
resp, SA, and Fj for all j ∈ I4 (see Alg. 2)

2: Compute F ∗j ⊆ Fj for all j ∈ I4 and optimal task order
3: µ∗F ∗ ← control policy from V c

F ∗,Tsafe
where F ∗ = ∪j∈I4F ∗j

4: µ∗j ← control policy from V c
F ∗j ,Tsafe

for all j ∈ I4
5: return µ∗F ∗ , µ∗j for all j ∈ I4 and optimal task order

A. Average cost-per-task-cycle
Recall that for ϕtask = �j∈I4 � � ψ4,j , the propositional

formula ψ4,j is the jth task. A run σ of system T completes
the jth task at time t if and only if σt ∈ [[ψ4,j]]. A task
cycle is a sequence of states that completes each task at least
once, i.e., it intersects [[ψj]] for each j = 1, . . . ,m at least
once. Similarly to [12], we minimize the average cost-per-
task-cycle, or equivalently the maximum cost of a task cycle
in the limit. For a deterministic system, this corresponds to
finding a cycle of minimal cost that completes every task.

We define the cost function over a run σ. Let σ be a
run of T under control policy µ, µ(σ) be the corresponding
control input sequence, and ITC(t) = 1 indicate that the
system completes a task cycle at time t and ITC(t) = 0
otherwise. The average cost per task cycle of run σ is

J ′TC(σ, µ(σ)) ∶= lim sup
n→∞

∑n
t=0 c(σt, µ(σt),σt+1)∑n

t=0 ITC(t) ,

which maps runs and control inputs of T to R ∪ ∞. This
map is well-defined when (i) c(σt, µ(σt),σt+1) is bounded
for all t ≥ 0, and (ii) there exists a t′ ∈ N such that ITC(t) = 1
for infinitely many t ≥ t′. We assume that (i) is true in the
sequel and note that (ii) holds for every run that satisfies a
formula ϕ with at least one task. If there are no tasks in ϕ,
one can add the task ��True so that ITC(t) = 1 at every
time instance (see Section VI-C).

We define the average per-task-cycle cost function

JTC(T µ(s)) ∶= max
σ∈T µ(s)J

′
TC(σ, µ(σ)) (2)

over the set of runs of system T starting from initial state s
under control policy µ. The cost function (2) does not depend
on any finite behavior of the system, intuitively because any
short-term costs are averaged out in the limit.

We next show that Problem 2 with cost function JTC is at
least as hard as the NP-hard generalized traveling salesman
problem [26].
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Recall that for ϕtask = �j∈I4 � � ψ4,j , the propositional

formula ψ4,j is the jth task. A run σ of system T completes
the jth task at time t if and only if σt ∈ [[ψ4,j]]. A task
cycle is a sequence of states that completes each task at least
once, i.e., it intersects [[ψj]] for each j = 1, . . . ,m at least
once. Similarly to [12], we minimize the average cost-per-
task-cycle, or equivalently the maximum cost of a task cycle
in the limit. For a deterministic system, this corresponds to
finding a cycle of minimal cost that completes every task.

We define the cost function over a run σ. Let σ be a
run of T under control policy µ, µ(σ) be the corresponding
control input sequence, and ITC(t) = 1 indicate that the
system completes a task cycle at time t and ITC(t) = 0
otherwise. The average cost per task cycle of run σ is

J ′TC(σ, µ(σ)) ∶= lim sup
n→∞

∑n
t=0 c(σt, µ(σt),σt+1)∑n

t=0 ITC(t) ,

which maps runs and control inputs of T to R ∪ ∞. This
map is well-defined when (i) c(σt, µ(σt),σt+1) is bounded
for all t ≥ 0, and (ii) there exists a t′ ∈ N such that ITC(t) = 1
for infinitely many t ≥ t′. We assume that (i) is true in the
sequel and note that (ii) holds for every run that satisfies a
formula ϕ with at least one task. If there are no tasks in ϕ,
one can add the task ��True so that ITC(t) = 1 at every
time instance (see Section VI-C).

We define the average per-task-cycle cost function

JTC(T µ(s)) ∶= max
σ∈T µ(s)J

′
TC(σ, µ(σ)) (2)

over the set of runs of system T starting from initial state s
under control policy µ. The cost function (2) does not depend
on any finite behavior of the system, intuitively because any
short-term costs are averaged out in the limit.

We next show that Problem 2 with cost function JTC is at
least as hard as the NP-hard generalized traveling salesman
problem [26].
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Op#mality is Hard

•  Theorem: Compu#ng a control policy that is
minimizes the average cost-‐per-‐task-‐cycle is
NP-‐hard, even in the determinis#c case.

•  Proof: By construc#ng a generalized traveling
salesman problem where tasks are nodes in
the TSP graph.

437/13/13 Wolff

Cost func:on: Average Minimax Task Cycle
Complexity: POLY POLY in task graph EXP in task graph



Task	  Graph	  

•  Create	  new	  graph	  that	  encodes	  shortest	  paths	  
between	  tasks	  

•  F	  states	  (determinis#c)	  
•  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  states	  (non-‐determinis#c)	  
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Task	  Graph	  

•  Create	  new	  graph	  that	  encodes	  shortest	  paths	  
between	  tasks	  

•  Number	  of	  states	  
– Determinis#c:	  |F|	  
– Non-‐determinis#c:	  	  

TABLE I
COMPLEXITY OF FEASIBLE POLICY SYNTHESIS

Language DTS NTS
Frag. in (1) O(�ϕ�(�S� + �R�)) O(�ϕ�Fmin(�S� + �R�))
GR(1) O(�ϕ��S��R�) O(�ϕ��S��R�)
LTL O(2(�ϕ�)(�S� + �R�)) O(22(�ϕ�)(�S� + �R�))

Algorithm 2), one can compute an optimal control policy
using the results of Chatterjee et al. [19]. For deterministic
systems, extensions to a more general weighted average cost
function can be found in [18].

VII. COMPLEXITY

We summarize our complexity results for feasible control
policy synthesis and compare with LTL and GR(1) [11].
We assume that set membership is determined in constant
time with a hash function [24]. We denote the length of a
temporal logic formula by �ϕ�. Let �ϕ� = �I2� + �I4� + �I5� for
the fragment in (1), �ϕ� = mn for a GR(1) formula with m

assumptions and n guarantees, and �ϕ� be the formula length
for LTL [21]. Recall that Fmin =minj∈I4 �[[p4,j]]�. For typical
motion planning specifications, Fmin � �S� and �ϕ� is small.
We use the non-symbolic complexity results for GR(1) in
[11]. Results are summarized in Table I.

We now summarize the complexity of optimal con-
trol policy synthesis. The task graph G

′ = (V ′,E′)
has O(∑i∈I4 2�Fi� − 1) states and can be computed in
O((∑i∈I4 2�Fi� − 1)(�S�log�S� + �R�)) time. Computing an
optimal control policy for JTC requires solving an NP-hard
generalized traveling salesman problem on G

′. Computing an
optimal control policy for Jbot requires O(log�E′�(�V ′�+�E′�)
time. An optimal control policy for Javg can be computed in
pseudo-polynomial time [19]. For deterministic systems, the
task graph has O(∑i∈I4 �Fi�) states and can be computed
in O((∑i∈I4 �Fi�)(�S�log�S� + �R�)) time. An optimal control
policy for Javg can be computed in O(�S��R�) time. Thus,
we can compute optimal control policies for deterministic
transition systems with cost functions Jbot and Javg in time
polynomial in the size of the system and specification.
Additionally, for non-deterministic transition systems where�Fj � = 1 for all j ∈ I4, we can compute optimal control
policies for Jbot in time polynomial in the size of the system
and specification.

Remark 8. The fragment in (1) is not handled well by
standard approaches. Using ltl2ba [27], we created Büchi
automaton for formulas of the form ϕresp. The automaton size
and time to compute it both increased exponentially with the
number of conjunctions in ϕresp.

VIII. EXAMPLES

The following examples (based on those in [15]) demon-
strate the techniques developed in Sections V and VI for
tasks motivated by robot motion planning in a planar en-
vironment (see Figure 3). All computations were done in
Python on a dual-core Linux desktop with 2 GB of memory.
All computation times were averaged over five arbitrarily
generated problem instances and include construction of the

Fig. 3. Left: Diagram of deterministic setup (n = 10). Only white cells are
labeled ’stockroom.’ Right: Diagram of non-deterministic setup (n = 10).
A dynamic obstacle (obs) moves within the shaded region.

Fig. 4. Control policy synthesis times for deterministic (left) and non-
deterministic (right) grids.

transition system. Due to lack of space, we only consider the
average cost-per-task-cycle cost function.

A. Deterministic transition system
Consider a gridworld where a robot occupies a single cell

at a time and can choose to either remain in its current cell or
move to one of four adjacent cells at each step. We consider
square grids with static obstacle densities of 20 percent. The
robot’s task is to eventually remain in the stockroom while
repeatedly visiting a pickup location P and multiple dropoff
locations D0,D1,D2,D3. The robot must never collide
with a static obstacle. The set of atomic propositions is{P,D0,D1,D2,D3, storeroom,obs}. This task is formalized
by ϕ =��stockroom ∧ ��P ∧ �j∈I4 ��Dj ∧ �¬obs. In
all following results, Dj holds at a single state in the transi-
tion system. Results for optimal control policy synthesis are
shown in Figure 4 for n×n grids where n ∈ {200,300,400}.
B. Non-deterministic transition system

We now consider a similar setup with a dynamically
moving obstacle. The state of the system is the product of
the robot’s location and the obstacle’s location, both of which
can move as previously described for the robot. The robot
selects an action and then the obstacle non-deterministically
moves. The robot’s task is similar to before and is formalized
as ϕ = ��P ∧ �j∈I4 ��Dj ∧ �¬obs. Results for optimal
control policy synthesis are shown in Figure 4 for n×n grids
where n ∈ {10,14,18}.

IX. CONCLUSIONS

We have presented a framework for optimal control policy
synthesis for non-deterministic transition systems with spec-
ifications from a fragment of temporal logic. Our approach
is simple and makes explicit connections with dynamic
programming through our extensive use of value functions.
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Fixed Ordering Assump#on

•  Assump:on: Op#mize over all fixed orderings
of tasks
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Fixed Ordering Assump#on

•  Assump:on: Op#mize over all fixed orderings
of tasks

•  Solve generalized TSP on task graph
– Use commercial solvers
– Approximate solu#ons

•  Solu#on gives op#mal task ordering and
subsets
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Outline
•  Preliminaries
•  Feasible control policies
•  Op#mal control policies
•  Examples
•  Future direc#ons
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Example: Pickup and Delivery
•  System:
–  Robot and obstacle
move to adjacent
regions each step

•  Specs:
– Avoid collisions
–  Repeatedly visit
Pickup and Dropoff
loca#ons

Op:mal Control Policy Time



Outline
•  Preliminaries
•  Feasible control policies
•  Op#mal control policies
•  Examples
•  Future direc#ons
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Future Direc#ons

•  Op:mal control of highly
dynamic systems
– Automata-‐guided
reachability [IROS13,accepted]

– Encoding LTL as mixed-‐
integer constraints [ISRR13, sub.]

•  Robust control for
uncertain systems
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Integrator (20 dim)
Solu:on in 6 sec.

P

D1

D2



Future Direc#ons
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Quadrotor Aircra]



Conclusions

•  Main results
– Op:mal control with LTL fragment
– Non-‐determinis:c and stochas#c systems
– Simple and extensible framework

•  Future work
– Receding horizon control
– Removing fixed-‐ordering assump#on
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