Optimal Control of Non-deterministic Systems for a Fragment of Temporal Logic

Eric M. Wolff¹ Ufuk Topcu² and Richard M. Murray¹ ¹Caltech and ²UPenn

SYNT July 13, 2013

Autonomous Systems in the Field

Planning in a Dynamic Environment

- Dynamic obstacles
- Safe navigation and repetitive tasks

Our Contributions

- Introduce expressive and efficient fragment of linear temporal logic
 - Optimal control
 - Non-deterministic and stochastic systems
 - Simple and extensible framework

Outline

- Preliminaries
- Feasible control policies
- Optimal control policies
- Examples
- Future directions

Outline

• Preliminaries

- Feasible control policies
- Optimal control policies
- Examples
- Future directions

Hierarchical Control Architecture

- We focus on the discrete planning layer
- Discrete plan is executed at continuous level

1. AlurHLP00, BeltaH06, HabetsCS06, KaramanF09, KloetzerB08, WongpiromsarnTM12, and more 7/13/13 Wolff 7

Discrete Abstractions

- dx/dt = f(x,u)
 - x = system state
 - u = control input

• Discrete states = sets of continuous states

Non-deterministic Transition Systems

- A non-deterministic transition system (NTS) is a tuple T = (S, A, R, s₀, AP, L) where
 - states S,
 - actions A,
 - transition function R: S x A \rightarrow 2^S,
 - initial state s_0 ,

Non-deterministic Transition Systems

- A non-deterministic transition system (NTS) is a tuple T = (S, A, R, s₀, AP, L) where
 - states S,
 - actions A,
 - transition function R: S x A \rightarrow 2^s,
 - initial state s_0 ,
 - atomic propositions AP,
 - labeling function $L: S \rightarrow 2^{AP}$, and
 - cost function c : S x A x S $\rightarrow \Re$.

Control Policies

• Finite-memory control policy: $\mu: S \times M \rightarrow A \times M$

Control Policies

- Finite-memory control policy: $\mu: S \times M \rightarrow A \times M$
- Two-player game:
 - 1) **System** picks action using control policy
 - 2) Environment picks next state

Control Policies

- Finite-memory control policy: $\mu: S \times M \rightarrow A \times M$
- Two-player game:
 - 1) **System** picks action using control policy
 - 2) Environment picks next state
- T^{μ} (s) : set of runs from state s under policy μ

• We consider formulas of the form:

$$\varphi_{\text{safe}} \coloneqq \Box \psi_1,$$
 Safety

• We consider formulas of the form:

$$\varphi_{\text{safe}} \coloneqq \Box \psi_1, \qquad \qquad \text{Safety}$$
$$\varphi_{\text{resp}} \coloneqq \bigwedge_{j \in I_2} \Box (\psi_{2,j} \implies \bigcirc \phi_{2,j}), \qquad \text{Response}$$

• We consider formulas of the form:

$$\begin{split} \varphi_{\text{safe}} &\coloneqq \Box \psi_1, & \text{Safety} \\ \varphi_{\text{resp}} &\coloneqq \bigwedge_{j \in I_2} \Box (\psi_{2,j} \implies \bigcirc \phi_{2,j}), & \text{Response} \\ \varphi_{\text{per}} &\coloneqq \diamondsuit \Box \psi_3, & \text{Persistence (stability)} \end{split}$$

• We consider formulas of the form:

$$\begin{split} \varphi_{\text{safe}} &\coloneqq \Box \psi_1, & \text{Safety} \\ \varphi_{\text{resp}} &\coloneqq \bigwedge_{j \in I_2} \Box (\psi_{2,j} \implies \bigcirc \phi_{2,j}), & \text{Response} \\ \varphi_{\text{per}} &\coloneqq \diamondsuit \Box \psi_3, & \text{Persistence (stability)} \\ \varphi_{\text{task}} &\coloneqq \bigwedge_{j \in I_4} \Box \diamondsuit \psi_{4,j}, & \text{Repeated tasks} \end{split}$$

• We consider formulas of the form:

Related Work

- **GR(1)** [PitermanPS06, BloemJPPS12] $(\Box \diamondsuit p_1 \land \dots \land \Box \diamondsuit p_m) \rightarrow (\Box \diamondsuit q_1 \land \dots \land \Box \diamondsuit q_n)$
- GRabin(1) [Ehlers11]
- Related logics: AlurT04, MalerPS95

• How this work differs:

GR1 system + persistence

- More system guarantees than GR(1)
- No environment liveness assumptions

Cost Functions

• Average cost-per-task-cycle

$$J'_{TC}(\sigma,\mu(\sigma)) \coloneqq \limsup_{n \to \infty} \frac{\sum_{t=0}^{n} c(\sigma_t,\mu(\sigma_t),\sigma_{t+1})}{\sum_{t=0}^{n} I_{TC}(t)}$$

Cost Functions

Average cost-per-task-cycle

$$J'_{TC}(\sigma,\mu(\sigma)) \coloneqq \limsup_{n \to \infty} \frac{\sum_{t=0}^{n} c(\sigma_t,\mu(\sigma_t),\sigma_{t+1})}{\sum_{t=0}^{n} I_{TC}(t)}$$

- Not discussed today
 - Minimax (bottleneck) cost
 - Average cost

Problem Statement

- Given:
 - Non-deterministic transition system T
 - Temporal logic specification $\boldsymbol{\phi}$ of the form

 $\varphi = \varphi_{\text{safe}} \land \varphi_{\text{resp}} \land \varphi_{\text{per}} \land \varphi_{\text{task}} \land \varphi_{\text{resp}}^{\text{ss}}$

– Cost function J

• **Problem**: Create control policy μ such that that the set of runs $T^{\mu}(s_0)$ satisfies ϕ and minimizes J

Value (Rank) Function and Reachability

 V^c_B(s): minimum cost to reach set B from state s under all resolutions of the non-determinism

$$V_{B,\mathcal{T}}^c(s) = \min_{a \in A(s)} \max_{t \in R(s,a)} V_{B,\mathcal{T}}^c(t) + c(s,a,t)$$

Value (Rank) Function and Reachability

 V^c_B(s): minimum cost to reach set B from state s under all resolutions of the non-determinism

$$V_{B,\mathcal{T}}^c(s) = \min_{a \in A(s)} \max_{t \in R(s,a)} V_{B,\mathcal{T}}^c(t) + c(s,a,t)$$

- Example
 - $V_{4}^{c}(1) = \infty$ $- V_{4}^{c}(2) = \infty$ $- V_{4}^{c}(3) = 1$ $- V_{4}^{c}(4) = 0$ $- CPre(4) = \{3, 4\} \text{ (attractor)}$

Outline

- Preliminaries
- Feasible control policies
- Optimal control policies
- Examples
- Future directions

Removing Unsafe Behaviors

- 1. Remove unsafe states from T ($\varphi_{safe}, \varphi_{per}$)
- 2. Remove unsafe transitions from T (φ_{resp} , φ_{resp}^{ss})

Removing Unsafe Behaviors

- 1. Remove unsafe states from T (ϕ_{safe}, ϕ_{per})
- 2. Remove unsafe transitions from T (φ_{resp} , φ_{resp}^{ss})

Repeated Tasks

- 1. Remove unsafe states from T (ϕ_{safe} , ϕ_{per})
- 2. Remove unsafe transitions from T (φ_{resp} , φ_{resp}^{ss})
- 3. Compute task cycle (generalized Büchi) on T_{inf}

 ϕ_{task} = []<> F1 & []<> F2

Iterate until sets stop changing.

ChatterjeeHP06, McNaughton93

can reach F1 (attractor)

Cannot reach F1

 ϕ_{task} = []<> F1 & []<> F2

ChatterjeeHP06, McNaughton93

 ϕ_{task} = []<> F1 & []<> F2

Cannot reach F2'

 ϕ_{task} = []<> F1 & []<> F2

 ϕ_{task} = []<> F1 & []<> F2

 ϕ_{task} = []<> F1 & []<> F2

 ϕ_{task} = []<> F1 & []<> F2

DONE!

Return the F_j task sets and their corresponding value functions.

ChatterjeeHP06, McNaughton93

Feasible Synthesis Summary

- What have we computed?
 - Largest possible task sets F_i
 - All states from which spec is feasible
 - Finite-memory control policies (from value fcn)
- Time complexity:

-S = # states, R = # transitions, $\phi = #$ specs

Language	DTS	NTS
Our method	$O(\varphi (S + R))$	$O(\varphi F_{\min}(S + R))$
GR (1)	O(arphi S R)	O(arphi S R)
LTL	$O(2^{(\varphi)}(S + R))$	$O(2^{2^{(\varphi)}}(S + R))$

Do Standard Methods Work?

- Task: Repeatedly visit locations P and D
- Blue = controlled robot (system)
- Red = non-deterministic obstacle (environment) 40

Outline

- Preliminaries
- Feasible control policies
- Optimal control policies
- Examples
- Future directions

Average Cost-Per-Task-Cycle

• Average cost-per-task-cycle of run σ is

$$J_{TC}'(\sigma,\mu(\sigma)) \coloneqq \limsup_{n \to \infty} \frac{\sum_{t=0}^{n} c(\sigma_t,\mu(\sigma_t),\sigma_{t+1})}{\sum_{t=0}^{n} I_{TC}(t)}$$

 The average cost-per-task-cycle cost function is

$$J_{TC}(\mathcal{T}^{\mu}(s)) \coloneqq \max_{\sigma \in \mathcal{T}^{\mu}(s)} J'_{TC}(\sigma, \mu(\sigma))$$

Optimality is Hard

- **Theorem**: Computing a control policy that is minimizes the average cost-per-task-cycle is NP-hard, even in the deterministic case.
- **Proof**: By constructing a generalized traveling salesman problem where tasks are nodes in the TSP graph.

Cost function:	Average	Minimax	Task Cycle
Complexity:	POLY	POLY in task graph	EXP in task graph

Task Graph

 Create new graph that encodes shortest paths between tasks

Task Graph

- Create new graph that encodes shortest paths between tasks
- Number of states
 - Deterministic: |F|
 - Non-deterministic: $\sum_{i \in I_4} 2^{|F_i|} 1$

Fixed Ordering Assumption

 Assumption: Optimize over all fixed orderings of tasks

Fixed Ordering Assumption

 Assumption: Optimize over all fixed orderings of tasks

- Solve generalized TSP on task graph
 - Use commercial solvers
 - Approximate solutions
- Solution gives optimal task ordering and subsets

Outline

- Preliminaries
- Feasible control policies
- Optimal control policies
- Examples
- Future directions

Example: Pickup and Delivery

- System:
 - Robot and obstacle move to adjacent regions each step
- Specs:
 - Avoid collisions
 - Repeatedly visit
 Pickup and Dropoff
 locations

Optimal Control Policy Time

Outline

- Preliminaries
- Feasible control policies
- Optimal control policies
- Examples
- Future directions

Future Directions

- Optimal control of highly dynamic systems
 - Automata-guided reachability [IROS13,accepted]
 - Encoding LTL as mixedinteger constraints [ISRR13, sub.]
- Robust control for uncertain systems

Integrator (20 dim) Solution in 6 sec.

Future Directions

Quadrotor

Aircraft

Conclusions

- Main results
 - Optimal control with LTL fragment
 - Non-deterministic and stochastic systems
 - Simple and extensible framework

- Future work
 - Receding horizon control
 - Removing fixed-ordering assumption

Thank you!

- Contact: Eric M. Wolff
 - Email: ewolff@caltech.edu
 - Web: www.cds.caltech.edu/~ewolff/
- Funding: NDSEG fellowship, Boeing, AFOSR

References

- R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, "Discrete abstractions of hybrid systems," Proc. IEEE, 2000.
- R. Alur and S. LaTorre, "Deterministic generators and games for LTL fragments," ACM Trans. Comput. Logic, vol. 5, no. 1, pp. 1–25, 2004.
- C.Belta and L.C.G.J.M.Habets, "Control of a class of nonlinear systems on rectangles," IEEE Trans. on Automatic Control, vol. 51, pp. 1749–1759, 2006,
- R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa'ar, "Synthesis of Reactive(1) designs," Journal of Computer and System Sciences, vol. 78, pp. 911–938, 2012.
- R. Ehlers, "Generalized Rabin(1) synthesis with applications to robust system synthesis," in NASA Formal Methods, 2011
- L. Habets, P. J. Collins, and J. H. van Schuppen, "Reachability and control synthesis for piecewiseaffine hybrid systems on simplices," IEEE Trans. on Automatic Control, vol. 51, pp. 938–948, 2006.
- S. Karaman and E. Frazzoli, "Sampling-based motion planning with deterministic μ-calculus specifications," in Proc. of IEEE Conf. on Decision and Control, 2009.
- M. Kloetzer and C. Belta, "A fully automated framework for control of linear systems from temporal logic specifications," IEEE Trans. on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.
- O. Maler, A. Pnueli, and J. Sifakis, "On the synthesis of discrete controllers for timed systems," in STACS 95.
- T. Wongpiromsarn, U. Topcu, and R. M. Murray, "Receding horizon temporal logic planning," IEEE Trans. on Automatic Control, 2012